From 62592d7cef2b2fc16ecd267ac11c3e7695e08997 Mon Sep 17 00:00:00 2001 From: Jonatas Grosman Date: Tue, 22 Feb 2022 21:45:06 +0000 Subject: [PATCH] Update README.md --- README.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 98bdd25..6a19553 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,7 @@ model-index: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: - name: Common Voice pt + name: Common Voice en type: common_voice args: en metrics: @@ -73,15 +73,15 @@ The script used for training can be found here: https://github.com/jonatasgrosma The model can be used directly (without a language model) as follows... -Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: +Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python -from asrecognition import ASREngine - -asr = ASREngine("en", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-english") +from huggingsound import SpeechRecognitionModel +model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] -transcriptions = asr.transcribe(audio_paths) + +transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: