diff --git a/README.md b/README.md index 98bdd25..6a19553 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,7 @@ model-index: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: - name: Common Voice pt + name: Common Voice en type: common_voice args: en metrics: @@ -73,15 +73,15 @@ The script used for training can be found here: https://github.com/jonatasgrosma The model can be used directly (without a language model) as follows... -Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: +Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python -from asrecognition import ASREngine - -asr = ASREngine("en", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-english") +from huggingsound import SpeechRecognitionModel +model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] -transcriptions = asr.transcribe(audio_paths) + +transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: