240 lines
9.3 KiB
Markdown
240 lines
9.3 KiB
Markdown
|
---
|
|||
|
language: en
|
|||
|
datasets:
|
|||
|
- common_voice
|
|||
|
metrics:
|
|||
|
- wer
|
|||
|
- cer
|
|||
|
tags:
|
|||
|
- audio
|
|||
|
- automatic-speech-recognition
|
|||
|
- speech
|
|||
|
- xlsr-fine-tuning-week
|
|||
|
license: apache-2.0
|
|||
|
model-index:
|
|||
|
- name: XLSR Wav2Vec2 English by Jonatas Grosman
|
|||
|
results:
|
|||
|
- task:
|
|||
|
name: Speech Recognition
|
|||
|
type: automatic-speech-recognition
|
|||
|
dataset:
|
|||
|
name: Common Voice en
|
|||
|
type: common_voice
|
|||
|
args: en
|
|||
|
metrics:
|
|||
|
- name: Test WER
|
|||
|
type: wer
|
|||
|
value: 39.59
|
|||
|
- name: Test CER
|
|||
|
type: cer
|
|||
|
value: 18.18
|
|||
|
---
|
|||
|
|
|||
|
# Wav2Vec2-Large-XLSR-53-English
|
|||
|
|
|||
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
|||
|
When using this model, make sure that your speech input is sampled at 16kHz.
|
|||
|
|
|||
|
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
The model can be used directly (without a language model) as follows:
|
|||
|
|
|||
|
```python
|
|||
|
import torch
|
|||
|
import librosa
|
|||
|
from datasets import load_dataset
|
|||
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|||
|
|
|||
|
LANG_ID = "en"
|
|||
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
|||
|
SAMPLES = 10
|
|||
|
|
|||
|
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
|||
|
|
|||
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
|||
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
|||
|
|
|||
|
# Preprocessing the datasets.
|
|||
|
# We need to read the audio files as arrays
|
|||
|
def speech_file_to_array_fn(batch):
|
|||
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
|||
|
batch["speech"] = speech_array
|
|||
|
batch["sentence"] = batch["sentence"].upper()
|
|||
|
return batch
|
|||
|
|
|||
|
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|||
|
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|||
|
|
|||
|
with torch.no_grad():
|
|||
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
|||
|
|
|||
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|||
|
predicted_sentences = processor.batch_decode(predicted_ids)
|
|||
|
|
|||
|
for i, predicted_sentence in enumerate(predicted_sentences):
|
|||
|
print("-" * 100)
|
|||
|
print("Reference:", test_dataset[i]["sentence"])
|
|||
|
print("Prediction:", predicted_sentence)
|
|||
|
```
|
|||
|
|
|||
|
| Reference | Prediction |
|
|||
|
| ------------- | ------------- |
|
|||
|
| "SHE'LL BE ALL RIGHT." | SHE'LD BE ALL RIGHT |
|
|||
|
| SIX | SIX |
|
|||
|
| "ALL'S WELL THAT ENDS WELL." | ALL IS WELL THAT ENDS WELL |
|
|||
|
| DO YOU MEAN IT? | DO YOU MEAN IT |
|
|||
|
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
|
|||
|
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOWIS MOCILE ARE GOING TO HANDLE AMBIGUITIES LIKE KU AND KU |
|
|||
|
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RISSHON WAS INCAN IN THE BAK TE |
|
|||
|
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
|
|||
|
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUISE IS SAUCED FOR THE GONDER |
|
|||
|
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
|
|||
|
|
|||
|
## Evaluation
|
|||
|
|
|||
|
The model can be evaluated as follows on the English test data of Common Voice.
|
|||
|
|
|||
|
```python
|
|||
|
import torch
|
|||
|
import re
|
|||
|
import librosa
|
|||
|
from datasets import load_dataset, load_metric
|
|||
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|||
|
|
|||
|
LANG_ID = "en"
|
|||
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
|||
|
DEVICE = "cuda"
|
|||
|
|
|||
|
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "<22>", "ʿ", "·", "჻", "~", "՞",
|
|||
|
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
|||
|
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
|||
|
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
|||
|
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
|||
|
|
|||
|
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
|||
|
|
|||
|
# uncomment the following lines to eval using other datasets
|
|||
|
# test_dataset = load_dataset("librispeech_asr", "clean", split="test")
|
|||
|
# test_dataset = load_dataset("librispeech_asr", "other", split="test")
|
|||
|
# test_dataset = load_dataset("timit_asr", split="test")
|
|||
|
|
|||
|
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
|||
|
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
|||
|
|
|||
|
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
|||
|
|
|||
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
|||
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
|||
|
model.to(DEVICE)
|
|||
|
|
|||
|
# Preprocessing the datasets.
|
|||
|
# We need to read the audio files as arrays
|
|||
|
def speech_file_to_array_fn(batch):
|
|||
|
with warnings.catch_warnings():
|
|||
|
warnings.simplefilter("ignore")
|
|||
|
speech_array, sampling_rate = librosa.load(batch["file"] if "file" in batch else batch["path"], sr=16_000)
|
|||
|
batch["speech"] = speech_array
|
|||
|
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["text"] if "text" in batch else batch["sentence"]).upper()
|
|||
|
return batch
|
|||
|
|
|||
|
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|||
|
|
|||
|
# Preprocessing the datasets.
|
|||
|
# We need to read the audio files as arrays
|
|||
|
def evaluate(batch):
|
|||
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|||
|
|
|||
|
with torch.no_grad():
|
|||
|
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
|||
|
|
|||
|
pred_ids = torch.argmax(logits, dim=-1)
|
|||
|
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
|||
|
return batch
|
|||
|
|
|||
|
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|||
|
|
|||
|
predictions = [x.upper() for x in result["pred_strings"]]
|
|||
|
references = [x.upper() for x in result["sentence"]]
|
|||
|
|
|||
|
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
|||
|
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
|||
|
```
|
|||
|
|
|||
|
**Test Result**:
|
|||
|
|
|||
|
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-20). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
**Common Voice**
|
|||
|
|
|||
|
| Model | WER | CER |
|
|||
|
| ------------- | ------------- | ------------- |
|
|||
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | **19.18%** | **8.25%** |
|
|||
|
| jonatasgrosman/wav2vec2-large-english | 21.16% | 9.53% |
|
|||
|
| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% |
|
|||
|
| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% |
|
|||
|
| facebook/wav2vec2-large-960h | 32.79% | 16.03% |
|
|||
|
| boris/xlsr-en-punctuation | 34.81% | 15.51% |
|
|||
|
| facebook/wav2vec2-base-960h | 39.86% | 19.89% |
|
|||
|
| facebook/wav2vec2-base-100h | 51.06% | 25.06% |
|
|||
|
| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% |
|
|||
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% |
|
|||
|
| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% |
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
**LibriSpeech (clean)**
|
|||
|
|
|||
|
| Model | WER | CER |
|
|||
|
| ------------- | ------------- | ------------- |
|
|||
|
| facebook/wav2vec2-large-960h-lv60-self | **1.86%** | **0.54%** |
|
|||
|
| facebook/wav2vec2-large-960h-lv60 | 2.15% | 0.61% |
|
|||
|
| facebook/wav2vec2-large-960h | 2.82% | 0.84% |
|
|||
|
| facebook/wav2vec2-base-960h | 3.44% | 1.06% |
|
|||
|
| facebook/wav2vec2-base-100h | 6.26% | 2.00% |
|
|||
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 6.97% | 2.02% |
|
|||
|
| jonatasgrosman/wav2vec2-large-english | 8.00% | 2.55% |
|
|||
|
| elgeish/wav2vec2-large-lv60-timit-asr | 15.53% | 4.93% |
|
|||
|
| boris/xlsr-en-punctuation | 19.28% | 6.45% |
|
|||
|
| elgeish/wav2vec2-base-timit-asr | 29.19% | 8.38% |
|
|||
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 31.82% | 12.41% |
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
**LibriSpeech (other)**
|
|||
|
|
|||
|
| Model | WER | CER |
|
|||
|
| ------------- | ------------- | ------------- |
|
|||
|
| facebook/wav2vec2-large-960h-lv60-self | **3.89%** | **1.40%** |
|
|||
|
| facebook/wav2vec2-large-960h-lv60 | 4.45% | 1.56% |
|
|||
|
| facebook/wav2vec2-large-960h | 6.49% | 2.52% |
|
|||
|
| facebook/wav2vec2-base-960h | 8.90% | 3.55% |
|
|||
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.75% | 4.23% |
|
|||
|
| jonatasgrosman/wav2vec2-large-english | 13.62% | 5.24% |
|
|||
|
| facebook/wav2vec2-base-100h | 13.97% | 5.51% |
|
|||
|
| boris/xlsr-en-punctuation | 26.40% | 10.11% |
|
|||
|
| elgeish/wav2vec2-large-lv60-timit-asr | 28.39% | 12.08% |
|
|||
|
| elgeish/wav2vec2-base-timit-asr | 42.04% | 15.57% |
|
|||
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 45.19% | 20.32% |
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
**TIMIT**
|
|||
|
|
|||
|
| Model | WER | CER |
|
|||
|
| ------------- | ------------- | ------------- |
|
|||
|
| facebook/wav2vec2-large-960h-lv60-self | **5.17%** | **1.33%** |
|
|||
|
| facebook/wav2vec2-large-960h-lv60 | 6.24% | 1.54% |
|
|||
|
| facebook/wav2vec2-large-960h | 9.63% | 2.19% |
|
|||
|
| facebook/wav2vec2-base-960h | 11.48% | 2.76% |
|
|||
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.93% | 3.50% |
|
|||
|
| elgeish/wav2vec2-large-lv60-timit-asr | 13.83% | 4.36% |
|
|||
|
| jonatasgrosman/wav2vec2-large-english | 13.91% | 4.01% |
|
|||
|
| facebook/wav2vec2-base-100h | 16.75% | 4.79% |
|
|||
|
| elgeish/wav2vec2-base-timit-asr | 25.40% | 8.16% |
|
|||
|
| boris/xlsr-en-punctuation | 25.93% | 9.99% |
|
|||
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 51.08% | 19.84% |
|