import gradio as gr from transformers import ViTImageProcessor, ViTModel from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) processor = ViTImageProcessor.from_pretrained('google/vit-large-patch16-224-in21k') model = ViTModel.from_pretrained('google/vit-large-patch16-224-in21k') def image_classification(image): inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_label = logits.argmax(-1).item() return model.config.id2label[predicted_label] demo = gr.Interface(fn=image_classification, inputs=gr.Image(), outputs=gr.Label(num_top_classes=1), title = "图像分类", theme = theme, examples = ['dog.jpeg']) if __name__ == "__main__": demo.queue(concurrency_count=10) demo.launch(server_name = "0.0.0.0")