53 lines
1.6 KiB
Python
53 lines
1.6 KiB
Python
import torch
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
|
import gradio as gr
|
|
from gradio.themes.utils import sizes
|
|
|
|
|
|
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
|
|
block_label_text_color = '#4D63FF',
|
|
block_title_text_color = '#4D63FF',
|
|
button_primary_text_color = '#4D63FF',
|
|
button_primary_background_fill='#FFFFFF',
|
|
button_primary_border_color='#4D63FF',
|
|
button_primary_background_fill_hover='#EDEFFF',
|
|
)
|
|
|
|
|
|
loc = "ydshieh/vit-gpt2-coco-en"
|
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
|
tokenizer = AutoTokenizer.from_pretrained(loc)
|
|
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
|
model.eval()
|
|
|
|
|
|
def predict(image):
|
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
|
|
|
with torch.no_grad():
|
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
|
|
total_caption = ""
|
|
for pred in preds:
|
|
total_caption = total_caption + pred.strip()
|
|
total_caption = total_caption + "\r\n"
|
|
|
|
return total_caption
|
|
|
|
demo = gr.Interface(fn=predict,
|
|
inputs='image',
|
|
outputs='text',
|
|
theme = theme,
|
|
css = "footer {visibility: hidden}",
|
|
allow_flagging = "never"
|
|
examples = ['soccer.jpg'])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.queue(concurrency_count=1).launch(server_name = "0.0.0.0")
|