from PIL import Image import gradio as gr from transformers import ViTFeatureExtractor, ViTForImageClassification import torch from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) # Init model, transforms model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier') def predict(im): labels = {0:"0-2", 1: "3-9" , 2: "10-19", 3: "20-29", 4: "30-39", 5: "40-49", 6: "50-59", 7:"60-69",8:"more than 70"} # Transform our image and pass it through the model inputs = transforms(im, return_tensors='pt') output = model(**inputs) # Predicted Class probabilities proba = output.logits.softmax(1) # Predicted Classes preds = proba.argmax(1) values, indices = torch.topk(proba, k=5) return {labels[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])} inputs = [ gr.inputs.Image(type="pil", label="Input Image") ] title = "ViT-Age-Classification" description = "ViT-Age-Classification is used to categorize an individual's age using images" article = " ViT Age Classification Model Repo on Hugging Face Model Hub" examples = ["stock_teen.webp","stock_guy.jpg","stock_old_woman.jpg"] gr.Interface( predict, inputs, outputs = 'label', css = "footer {visibility: hidden}", allow_flagging = "never", examples=examples, theme=theme, ).launch(enable_queue=True, server_name = "0.0.0.0")