from transformers import ViltProcessor, ViltForQuestionAnswering from PIL import Image import gradio as gr import torch from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") def vqa(image, question): inp = Image.fromarray(image.astype('uint8'), 'RGB') inputs = processor(inp, question, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits idx = logits.argmax(-1).item() return model.config.id2label[idx] demo = gr.Interface(fn=vqa, inputs=['image', 'text'], outputs='text', title = "vqa", theme=theme, examples = [['soccer.jpg', 'how many people in the picture?']]) if __name__ == "__main__": demo.queue(concurrency_count=3).launch()