import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) tokenizer = T5Tokenizer.from_pretrained("t5-small") model = T5ForConditionalGeneration.from_pretrained("t5-small") def translation(english, language): if language == 'German': input_ids = tokenizer("translate English to German: " + english, return_tensors="pt").input_ids elif language == 'French': input_ids = tokenizer("translate English to French: " + english, return_tensors="pt").input_ids else: input_ids = tokenizer("translate English to Romanian: " + english, return_tensors="pt").input_ids outputs = model.generate(input_ids) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface(fn=translation, inputs=['text', gr.inputs.Radio(['German','French','Romanian'], type='value', default='German', label='language')], outputs='text', title = "翻译", theme = theme ) if __name__ == "__main__": # demo.queue(concurrency_count=3) demo.launch(server_name = "0.0.0.0") #demo.launch()