import gradio as gr from transformers import AutoImageProcessor, ResNetForImageClassification import torch from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50") def image_classification(image): inputs = processor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_label = logits.argmax(-1).item() return model.config.id2label[predicted_label] demo = gr.Interface(fn=image_classification, inputs=gr.Image(), outputs=gr.Label(num_top_classes=1), css = "footer {visibility: hidden}", allow_flagging = "never", theme = theme, examples = ['dog.jpeg']) if __name__ == "__main__": demo.queue(concurrency_count=10) demo.launch(server_name = "0.0.0.0")