82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
import gradio as gr
|
|
import plotly.graph_objects as go
|
|
|
|
import torch
|
|
from tqdm.auto import tqdm
|
|
|
|
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
|
|
from point_e.diffusion.sampler import PointCloudSampler
|
|
from point_e.models.download import load_checkpoint
|
|
from point_e.models.configs import MODEL_CONFIGS, model_from_config
|
|
from point_e.util.plotting import plot_point_cloud
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
print('creating base model...')
|
|
base_name = 'base40M-textvec'
|
|
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
|
|
base_model.eval()
|
|
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
|
|
|
|
print('creating upsample model...')
|
|
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
|
upsampler_model.eval()
|
|
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
|
|
|
print('downloading base checkpoint...')
|
|
base_model.load_state_dict(load_checkpoint(base_name, device))
|
|
|
|
print('downloading upsampler checkpoint...')
|
|
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
|
|
|
sampler = PointCloudSampler(
|
|
device=device,
|
|
models=[base_model, upsampler_model],
|
|
diffusions=[base_diffusion, upsampler_diffusion],
|
|
num_points=[1024, 4096 - 1024],
|
|
aux_channels=['R', 'G', 'B'],
|
|
guidance_scale=[3.0, 0.0],
|
|
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
|
|
)
|
|
|
|
def inference(prompt):
|
|
samples = None
|
|
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])):
|
|
samples = x
|
|
pc = sampler.output_to_point_clouds(samples)[0]
|
|
pc = sampler.output_to_point_clouds(samples)[0]
|
|
colors=(238, 75, 43)
|
|
fig = go.Figure(
|
|
data=[
|
|
go.Scatter3d(
|
|
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
|
|
mode='markers',
|
|
marker=dict(
|
|
size=2,
|
|
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
|
|
)
|
|
)
|
|
],
|
|
layout=dict(
|
|
scene=dict(
|
|
xaxis=dict(visible=False),
|
|
yaxis=dict(visible=False),
|
|
zaxis=dict(visible=False)
|
|
)
|
|
),
|
|
)
|
|
return fig
|
|
|
|
demo = gr.Interface(
|
|
fn=inference,
|
|
inputs="text",
|
|
outputs=gr.Plot(),
|
|
examples=[
|
|
["a red motorcycle"],
|
|
["a RED pumpkin"],
|
|
["a yellow rubber duck"]
|
|
],
|
|
)
|
|
demo.queue(max_size=30)
|
|
demo.launch(server_name = "0.0.0.0")
|