Compare commits

...

10 Commits

Author SHA1 Message Date
Lysandre 42f548f323 Adding `safetensors` variant of this model (#9)
- Adding `safetensors` variant of this model (42d8930d2fa6e51784fc924d37943d1cb89ec0de)


Co-authored-by: Nicolas Patry <Narsil@users.noreply.huggingface.co>
2022-11-16 15:16:18 +00:00
lysandre f6d161e8f5 Update README.md (#1)
- Update README.md (e9f5442d0e5232f48560686bed290d9dfc005c33)


Co-authored-by: Loïck BOURDOIS <lbourdois@users.noreply.huggingface.co>
2022-06-06 11:40:43 +00:00
joaogante a8c9047dc3 Add TF weights (#2)
- Add TF weights (9e83a6a990fc25f6073fe25416d1899fe3797944)
2022-06-02 15:57:03 +00:00
patil-suraj 5903ba73ba remove ipynb ckpt 2022-03-04 13:27:16 +00:00
patil-suraj 8524a13ea3 add flax model 2022-03-04 13:26:41 +00:00
patil-suraj e23220098f track msgpack 2022-03-04 13:24:14 +00:00
Niels Rogge 02355debe6 Add model card 2021-09-16 09:21:15 +00:00
Julien Chaumond d9d8a8ea5e Migrate model card from transformers-repo
Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/xlm-roberta-base-README.md
2020-12-11 22:26:06 +01:00
system 446679f6a9 Update tokenizer.json 2020-10-12 12:57:09 +00:00
system 2cfd5ad1f3 Update config.json 2020-04-24 16:07:22 +00:00
7 changed files with 219 additions and 16 deletions

2
.gitattributes vendored
View File

@ -6,3 +6,5 @@
*.tar.gz filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
model.safetensors filter=lfs diff=lfs merge=lfs -text

200
README.md Normal file
View File

@ -0,0 +1,200 @@
---
tags:
- exbert
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
---
# XLM-RoBERTa (base-sized model)
XLM-RoBERTa model pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).
Disclaimer: The team releasing XLM-RoBERTa did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
XLM-RoBERTa is a multilingual version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages.
RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa model as inputs.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlm-roberta) to look for fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2.
## Usage
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='xlm-roberta-base')
>>> unmasker("Hello I'm a <mask> model.")
[{'score': 0.10563907772302628,
'sequence': "Hello I'm a fashion model.",
'token': 54543,
'token_str': 'fashion'},
{'score': 0.08015287667512894,
'sequence': "Hello I'm a new model.",
'token': 3525,
'token_str': 'new'},
{'score': 0.033413201570510864,
'sequence': "Hello I'm a model model.",
'token': 3299,
'token_str': 'model'},
{'score': 0.030217764899134636,
'sequence': "Hello I'm a French model.",
'token': 92265,
'token_str': 'French'},
{'score': 0.026436051353812218,
'sequence': "Hello I'm a sexy model.",
'token': 17473,
'token_str': 'sexy'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
model = AutoModelForMaskedLM.from_pretrained("xlm-roberta-base")
# prepare input
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
# forward pass
output = model(**encoded_input)
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1911-02116,
author = {Alexis Conneau and
Kartikay Khandelwal and
Naman Goyal and
Vishrav Chaudhary and
Guillaume Wenzek and
Francisco Guzm{\'{a}}n and
Edouard Grave and
Myle Ott and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {Unsupervised Cross-lingual Representation Learning at Scale},
journal = {CoRR},
volume = {abs/1911.02116},
year = {2019},
url = {http://arxiv.org/abs/1911.02116},
eprinttype = {arXiv},
eprint = {1911.02116},
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=xlm-roberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>

View File

@ -3,32 +3,23 @@
"XLMRobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"finetuning_task": null,
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "xlm-roberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"num_labels": 2,
"output_attentions": false,
"output_hidden_states": false,
"output_past": true,
"pruned_heads": {},
"torchscript": false,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.17.0.dev0",
"type_vocab_size": 1,
"use_bfloat16": false,
"use_cache": true,
"vocab_size": 250002
}

BIN
flax_model.msgpack (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
tf_model.h5 (Stored with Git LFS) Normal file

Binary file not shown.

1
tokenizer.json Normal file

File diff suppressed because one or more lines are too long