Compare commits
No commits in common. "bc2764f8af2e92b6eb5679868df33e224075ca68" and "2ecd732fb792ee9de217a2f7a7154e044cf3d782" have entirely different histories.
bc2764f8af
...
2ecd732fb7
|
@ -6,5 +6,3 @@
|
||||||
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
||||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
||||||
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
||||||
|
|
234
README.md
234
README.md
|
@ -1,234 +0,0 @@
|
||||||
---
|
|
||||||
language: en
|
|
||||||
tags:
|
|
||||||
- exbert
|
|
||||||
license: mit
|
|
||||||
datasets:
|
|
||||||
- bookcorpus
|
|
||||||
- wikipedia
|
|
||||||
---
|
|
||||||
|
|
||||||
# RoBERTa base model
|
|
||||||
|
|
||||||
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
|
|
||||||
[this paper](https://arxiv.org/abs/1907.11692) and first released in
|
|
||||||
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
|
|
||||||
makes a difference between english and English.
|
|
||||||
|
|
||||||
Disclaimer: The team releasing RoBERTa did not write a model card for this model so this model card has been written by
|
|
||||||
the Hugging Face team.
|
|
||||||
|
|
||||||
## Model description
|
|
||||||
|
|
||||||
RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means
|
|
||||||
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
|
|
||||||
publicly available data) with an automatic process to generate inputs and labels from those texts.
|
|
||||||
|
|
||||||
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
|
|
||||||
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
|
|
||||||
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
|
|
||||||
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
|
|
||||||
learn a bidirectional representation of the sentence.
|
|
||||||
|
|
||||||
This way, the model learns an inner representation of the English language that can then be used to extract features
|
|
||||||
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
|
|
||||||
classifier using the features produced by the BERT model as inputs.
|
|
||||||
|
|
||||||
## Intended uses & limitations
|
|
||||||
|
|
||||||
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
|
|
||||||
See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that
|
|
||||||
interests you.
|
|
||||||
|
|
||||||
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
|
|
||||||
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
|
|
||||||
generation you should look at a model like GPT2.
|
|
||||||
|
|
||||||
### How to use
|
|
||||||
|
|
||||||
You can use this model directly with a pipeline for masked language modeling:
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>> from transformers import pipeline
|
|
||||||
>>> unmasker = pipeline('fill-mask', model='roberta-base')
|
|
||||||
>>> unmasker("Hello I'm a <mask> model.")
|
|
||||||
|
|
||||||
[{'sequence': "<s>Hello I'm a male model.</s>",
|
|
||||||
'score': 0.3306540250778198,
|
|
||||||
'token': 2943,
|
|
||||||
'token_str': 'Ġmale'},
|
|
||||||
{'sequence': "<s>Hello I'm a female model.</s>",
|
|
||||||
'score': 0.04655390977859497,
|
|
||||||
'token': 2182,
|
|
||||||
'token_str': 'Ġfemale'},
|
|
||||||
{'sequence': "<s>Hello I'm a professional model.</s>",
|
|
||||||
'score': 0.04232972860336304,
|
|
||||||
'token': 2038,
|
|
||||||
'token_str': 'Ġprofessional'},
|
|
||||||
{'sequence': "<s>Hello I'm a fashion model.</s>",
|
|
||||||
'score': 0.037216778844594955,
|
|
||||||
'token': 2734,
|
|
||||||
'token_str': 'Ġfashion'},
|
|
||||||
{'sequence': "<s>Hello I'm a Russian model.</s>",
|
|
||||||
'score': 0.03253649175167084,
|
|
||||||
'token': 1083,
|
|
||||||
'token_str': 'ĠRussian'}]
|
|
||||||
```
|
|
||||||
|
|
||||||
Here is how to use this model to get the features of a given text in PyTorch:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from transformers import RobertaTokenizer, RobertaModel
|
|
||||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
|
||||||
model = RobertaModel.from_pretrained('roberta-base')
|
|
||||||
text = "Replace me by any text you'd like."
|
|
||||||
encoded_input = tokenizer(text, return_tensors='pt')
|
|
||||||
output = model(**encoded_input)
|
|
||||||
```
|
|
||||||
|
|
||||||
and in TensorFlow:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from transformers import RobertaTokenizer, TFRobertaModel
|
|
||||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
|
||||||
model = TFRobertaModel.from_pretrained('roberta-base')
|
|
||||||
text = "Replace me by any text you'd like."
|
|
||||||
encoded_input = tokenizer(text, return_tensors='tf')
|
|
||||||
output = model(encoded_input)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Limitations and bias
|
|
||||||
|
|
||||||
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
|
|
||||||
neutral. Therefore, the model can have biased predictions:
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>> from transformers import pipeline
|
|
||||||
>>> unmasker = pipeline('fill-mask', model='roberta-base')
|
|
||||||
>>> unmasker("The man worked as a <mask>.")
|
|
||||||
|
|
||||||
[{'sequence': '<s>The man worked as a mechanic.</s>',
|
|
||||||
'score': 0.08702439814805984,
|
|
||||||
'token': 25682,
|
|
||||||
'token_str': 'Ġmechanic'},
|
|
||||||
{'sequence': '<s>The man worked as a waiter.</s>',
|
|
||||||
'score': 0.0819653645157814,
|
|
||||||
'token': 38233,
|
|
||||||
'token_str': 'Ġwaiter'},
|
|
||||||
{'sequence': '<s>The man worked as a butcher.</s>',
|
|
||||||
'score': 0.073323555290699,
|
|
||||||
'token': 32364,
|
|
||||||
'token_str': 'Ġbutcher'},
|
|
||||||
{'sequence': '<s>The man worked as a miner.</s>',
|
|
||||||
'score': 0.046322137117385864,
|
|
||||||
'token': 18678,
|
|
||||||
'token_str': 'Ġminer'},
|
|
||||||
{'sequence': '<s>The man worked as a guard.</s>',
|
|
||||||
'score': 0.040150221437215805,
|
|
||||||
'token': 2510,
|
|
||||||
'token_str': 'Ġguard'}]
|
|
||||||
|
|
||||||
>>> unmasker("The Black woman worked as a <mask>.")
|
|
||||||
|
|
||||||
[{'sequence': '<s>The Black woman worked as a waitress.</s>',
|
|
||||||
'score': 0.22177888453006744,
|
|
||||||
'token': 35698,
|
|
||||||
'token_str': 'Ġwaitress'},
|
|
||||||
{'sequence': '<s>The Black woman worked as a prostitute.</s>',
|
|
||||||
'score': 0.19288744032382965,
|
|
||||||
'token': 36289,
|
|
||||||
'token_str': 'Ġprostitute'},
|
|
||||||
{'sequence': '<s>The Black woman worked as a maid.</s>',
|
|
||||||
'score': 0.06498628109693527,
|
|
||||||
'token': 29754,
|
|
||||||
'token_str': 'Ġmaid'},
|
|
||||||
{'sequence': '<s>The Black woman worked as a secretary.</s>',
|
|
||||||
'score': 0.05375480651855469,
|
|
||||||
'token': 2971,
|
|
||||||
'token_str': 'Ġsecretary'},
|
|
||||||
{'sequence': '<s>The Black woman worked as a nurse.</s>',
|
|
||||||
'score': 0.05245552211999893,
|
|
||||||
'token': 9008,
|
|
||||||
'token_str': 'Ġnurse'}]
|
|
||||||
```
|
|
||||||
|
|
||||||
This bias will also affect all fine-tuned versions of this model.
|
|
||||||
|
|
||||||
## Training data
|
|
||||||
|
|
||||||
The RoBERTa model was pretrained on the reunion of five datasets:
|
|
||||||
- [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books;
|
|
||||||
- [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ;
|
|
||||||
- [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news
|
|
||||||
articles crawled between September 2016 and February 2019.
|
|
||||||
- [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to
|
|
||||||
train GPT-2,
|
|
||||||
- [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the
|
|
||||||
story-like style of Winograd schemas.
|
|
||||||
|
|
||||||
Together these datasets weigh 160GB of text.
|
|
||||||
|
|
||||||
## Training procedure
|
|
||||||
|
|
||||||
### Preprocessing
|
|
||||||
|
|
||||||
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50,000. The inputs of
|
|
||||||
the model take pieces of 512 contiguous tokens that may span over documents. The beginning of a new document is marked
|
|
||||||
with `<s>` and the end of one by `</s>`
|
|
||||||
|
|
||||||
The details of the masking procedure for each sentence are the following:
|
|
||||||
- 15% of the tokens are masked.
|
|
||||||
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
|
|
||||||
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
|
|
||||||
- In the 10% remaining cases, the masked tokens are left as is.
|
|
||||||
|
|
||||||
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
|
|
||||||
|
|
||||||
### Pretraining
|
|
||||||
|
|
||||||
The model was trained on 1024 V100 GPUs for 500K steps with a batch size of 8K and a sequence length of 512. The
|
|
||||||
optimizer used is Adam with a learning rate of 6e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and
|
|
||||||
\\(\epsilon = 1e-6\\), a weight decay of 0.01, learning rate warmup for 24,000 steps and linear decay of the learning
|
|
||||||
rate after.
|
|
||||||
|
|
||||||
## Evaluation results
|
|
||||||
|
|
||||||
When fine-tuned on downstream tasks, this model achieves the following results:
|
|
||||||
|
|
||||||
Glue test results:
|
|
||||||
|
|
||||||
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|
|
||||||
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
|
|
||||||
| | 87.6 | 91.9 | 92.8 | 94.8 | 63.6 | 91.2 | 90.2 | 78.7 |
|
|
||||||
|
|
||||||
|
|
||||||
### BibTeX entry and citation info
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@article{DBLP:journals/corr/abs-1907-11692,
|
|
||||||
author = {Yinhan Liu and
|
|
||||||
Myle Ott and
|
|
||||||
Naman Goyal and
|
|
||||||
Jingfei Du and
|
|
||||||
Mandar Joshi and
|
|
||||||
Danqi Chen and
|
|
||||||
Omer Levy and
|
|
||||||
Mike Lewis and
|
|
||||||
Luke Zettlemoyer and
|
|
||||||
Veselin Stoyanov},
|
|
||||||
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
|
|
||||||
journal = {CoRR},
|
|
||||||
volume = {abs/1907.11692},
|
|
||||||
year = {2019},
|
|
||||||
url = {http://arxiv.org/abs/1907.11692},
|
|
||||||
archivePrefix = {arXiv},
|
|
||||||
eprint = {1907.11692},
|
|
||||||
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
|
|
||||||
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
|
|
||||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
<a href="https://huggingface.co/exbert/?model=roberta-base">
|
|
||||||
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
|
|
||||||
</a>
|
|
|
@ -3,8 +3,7 @@
|
||||||
"RobertaForMaskedLM"
|
"RobertaForMaskedLM"
|
||||||
],
|
],
|
||||||
"attention_probs_dropout_prob": 0.1,
|
"attention_probs_dropout_prob": 0.1,
|
||||||
"bos_token_id": 0,
|
"finetuning_task": null,
|
||||||
"eos_token_id": 2,
|
|
||||||
"hidden_act": "gelu",
|
"hidden_act": "gelu",
|
||||||
"hidden_dropout_prob": 0.1,
|
"hidden_dropout_prob": 0.1,
|
||||||
"hidden_size": 768,
|
"hidden_size": 768,
|
||||||
|
@ -12,10 +11,12 @@
|
||||||
"intermediate_size": 3072,
|
"intermediate_size": 3072,
|
||||||
"layer_norm_eps": 1e-05,
|
"layer_norm_eps": 1e-05,
|
||||||
"max_position_embeddings": 514,
|
"max_position_embeddings": 514,
|
||||||
"model_type": "roberta",
|
|
||||||
"num_attention_heads": 12,
|
"num_attention_heads": 12,
|
||||||
"num_hidden_layers": 12,
|
"num_hidden_layers": 12,
|
||||||
"pad_token_id": 1,
|
"num_labels": 2,
|
||||||
|
"output_attentions": false,
|
||||||
|
"output_hidden_states": false,
|
||||||
|
"torchscript": false,
|
||||||
"type_vocab_size": 1,
|
"type_vocab_size": 1,
|
||||||
"vocab_size": 50265
|
"vocab_size": 50265
|
||||||
}
|
}
|
||||||
|
|
BIN
flax_model.msgpack (Stored with Git LFS)
BIN
flax_model.msgpack (Stored with Git LFS)
Binary file not shown.
BIN
model.safetensors (Stored with Git LFS)
BIN
model.safetensors (Stored with Git LFS)
Binary file not shown.
|
@ -0,0 +1,11 @@
|
||||||
|
{
|
||||||
|
"caveats_and_recommendations": {},
|
||||||
|
"ethical_considerations": {},
|
||||||
|
"evaluation_data": {},
|
||||||
|
"factors": {},
|
||||||
|
"intended_use": {},
|
||||||
|
"metrics": {},
|
||||||
|
"model_details": {},
|
||||||
|
"quantitative_analyses": {},
|
||||||
|
"training_data": {}
|
||||||
|
}
|
BIN
rust_model.ot (Stored with Git LFS)
BIN
rust_model.ot (Stored with Git LFS)
Binary file not shown.
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue