Compare commits
No commits in common. "fdfce55e83dbed325647a63e7e1f5de19f0382ba" and "875a30fe155697b637c68f2c93577200c0546fba" have entirely different histories.
fdfce55e83
...
875a30fe15
|
@ -6,5 +6,3 @@
|
||||||
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
||||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
||||||
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
||||||
|
|
256
README.md
256
README.md
|
@ -1,256 +0,0 @@
|
||||||
---
|
|
||||||
language:
|
|
||||||
- multilingual
|
|
||||||
- af
|
|
||||||
- sq
|
|
||||||
- ar
|
|
||||||
- an
|
|
||||||
- hy
|
|
||||||
- ast
|
|
||||||
- az
|
|
||||||
- ba
|
|
||||||
- eu
|
|
||||||
- bar
|
|
||||||
- be
|
|
||||||
- bn
|
|
||||||
- inc
|
|
||||||
- bs
|
|
||||||
- br
|
|
||||||
- bg
|
|
||||||
- my
|
|
||||||
- ca
|
|
||||||
- ceb
|
|
||||||
- ce
|
|
||||||
- zh
|
|
||||||
- cv
|
|
||||||
- hr
|
|
||||||
- cs
|
|
||||||
- da
|
|
||||||
- nl
|
|
||||||
- en
|
|
||||||
- et
|
|
||||||
- fi
|
|
||||||
- fr
|
|
||||||
- gl
|
|
||||||
- ka
|
|
||||||
- de
|
|
||||||
- el
|
|
||||||
- gu
|
|
||||||
- ht
|
|
||||||
- he
|
|
||||||
- hi
|
|
||||||
- hu
|
|
||||||
- is
|
|
||||||
- io
|
|
||||||
- id
|
|
||||||
- ga
|
|
||||||
- it
|
|
||||||
- ja
|
|
||||||
- jv
|
|
||||||
- kn
|
|
||||||
- kk
|
|
||||||
- ky
|
|
||||||
- ko
|
|
||||||
- la
|
|
||||||
- lv
|
|
||||||
- lt
|
|
||||||
- roa
|
|
||||||
- nds
|
|
||||||
- lm
|
|
||||||
- mk
|
|
||||||
- mg
|
|
||||||
- ms
|
|
||||||
- ml
|
|
||||||
- mr
|
|
||||||
- mn
|
|
||||||
- min
|
|
||||||
- ne
|
|
||||||
- new
|
|
||||||
- nb
|
|
||||||
- nn
|
|
||||||
- oc
|
|
||||||
- fa
|
|
||||||
- pms
|
|
||||||
- pl
|
|
||||||
- pt
|
|
||||||
- pa
|
|
||||||
- ro
|
|
||||||
- ru
|
|
||||||
- sco
|
|
||||||
- sr
|
|
||||||
- hr
|
|
||||||
- scn
|
|
||||||
- sk
|
|
||||||
- sl
|
|
||||||
- aze
|
|
||||||
- es
|
|
||||||
- su
|
|
||||||
- sw
|
|
||||||
- sv
|
|
||||||
- tl
|
|
||||||
- tg
|
|
||||||
- th
|
|
||||||
- ta
|
|
||||||
- tt
|
|
||||||
- te
|
|
||||||
- tr
|
|
||||||
- uk
|
|
||||||
- ud
|
|
||||||
- uz
|
|
||||||
- vi
|
|
||||||
- vo
|
|
||||||
- war
|
|
||||||
- cy
|
|
||||||
- fry
|
|
||||||
- pnb
|
|
||||||
- yo
|
|
||||||
license: apache-2.0
|
|
||||||
datasets:
|
|
||||||
- wikipedia
|
|
||||||
---
|
|
||||||
|
|
||||||
# BERT multilingual base model (cased)
|
|
||||||
|
|
||||||
Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
|
|
||||||
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
|
|
||||||
[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
|
|
||||||
between english and English.
|
|
||||||
|
|
||||||
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
|
|
||||||
the Hugging Face team.
|
|
||||||
|
|
||||||
## Model description
|
|
||||||
|
|
||||||
BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
|
|
||||||
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
|
|
||||||
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
|
|
||||||
was pretrained with two objectives:
|
|
||||||
|
|
||||||
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
|
|
||||||
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
|
|
||||||
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
|
|
||||||
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
|
|
||||||
sentence.
|
|
||||||
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
|
|
||||||
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
|
|
||||||
predict if the two sentences were following each other or not.
|
|
||||||
|
|
||||||
This way, the model learns an inner representation of the languages in the training set that can then be used to
|
|
||||||
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
|
|
||||||
standard classifier using the features produced by the BERT model as inputs.
|
|
||||||
|
|
||||||
## Intended uses & limitations
|
|
||||||
|
|
||||||
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
|
|
||||||
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
|
|
||||||
fine-tuned versions on a task that interests you.
|
|
||||||
|
|
||||||
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
|
|
||||||
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
|
|
||||||
generation you should look at model like GPT2.
|
|
||||||
|
|
||||||
### How to use
|
|
||||||
|
|
||||||
You can use this model directly with a pipeline for masked language modeling:
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>> from transformers import pipeline
|
|
||||||
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased')
|
|
||||||
>>> unmasker("Hello I'm a [MASK] model.")
|
|
||||||
|
|
||||||
[{'sequence': "[CLS] Hello I'm a model model. [SEP]",
|
|
||||||
'score': 0.10182085633277893,
|
|
||||||
'token': 13192,
|
|
||||||
'token_str': 'model'},
|
|
||||||
{'sequence': "[CLS] Hello I'm a world model. [SEP]",
|
|
||||||
'score': 0.052126359194517136,
|
|
||||||
'token': 11356,
|
|
||||||
'token_str': 'world'},
|
|
||||||
{'sequence': "[CLS] Hello I'm a data model. [SEP]",
|
|
||||||
'score': 0.048930276185274124,
|
|
||||||
'token': 11165,
|
|
||||||
'token_str': 'data'},
|
|
||||||
{'sequence': "[CLS] Hello I'm a flight model. [SEP]",
|
|
||||||
'score': 0.02036019042134285,
|
|
||||||
'token': 23578,
|
|
||||||
'token_str': 'flight'},
|
|
||||||
{'sequence': "[CLS] Hello I'm a business model. [SEP]",
|
|
||||||
'score': 0.020079681649804115,
|
|
||||||
'token': 14155,
|
|
||||||
'token_str': 'business'}]
|
|
||||||
```
|
|
||||||
|
|
||||||
Here is how to use this model to get the features of a given text in PyTorch:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from transformers import BertTokenizer, BertModel
|
|
||||||
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
|
||||||
model = BertModel.from_pretrained("bert-base-multilingual-cased")
|
|
||||||
text = "Replace me by any text you'd like."
|
|
||||||
encoded_input = tokenizer(text, return_tensors='pt')
|
|
||||||
output = model(**encoded_input)
|
|
||||||
```
|
|
||||||
|
|
||||||
and in TensorFlow:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from transformers import BertTokenizer, TFBertModel
|
|
||||||
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
|
||||||
model = TFBertModel.from_pretrained("bert-base-multilingual-cased")
|
|
||||||
text = "Replace me by any text you'd like."
|
|
||||||
encoded_input = tokenizer(text, return_tensors='tf')
|
|
||||||
output = model(encoded_input)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Training data
|
|
||||||
|
|
||||||
The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list
|
|
||||||
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
|
|
||||||
|
|
||||||
## Training procedure
|
|
||||||
|
|
||||||
### Preprocessing
|
|
||||||
|
|
||||||
The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
|
|
||||||
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
|
|
||||||
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
|
|
||||||
|
|
||||||
The inputs of the model are then of the form:
|
|
||||||
|
|
||||||
```
|
|
||||||
[CLS] Sentence A [SEP] Sentence B [SEP]
|
|
||||||
```
|
|
||||||
|
|
||||||
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
|
|
||||||
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
|
|
||||||
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
|
|
||||||
"sentences" has a combined length of less than 512 tokens.
|
|
||||||
|
|
||||||
The details of the masking procedure for each sentence are the following:
|
|
||||||
- 15% of the tokens are masked.
|
|
||||||
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
|
|
||||||
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
|
|
||||||
- In the 10% remaining cases, the masked tokens are left as is.
|
|
||||||
|
|
||||||
|
|
||||||
### BibTeX entry and citation info
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@article{DBLP:journals/corr/abs-1810-04805,
|
|
||||||
author = {Jacob Devlin and
|
|
||||||
Ming{-}Wei Chang and
|
|
||||||
Kenton Lee and
|
|
||||||
Kristina Toutanova},
|
|
||||||
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
|
|
||||||
Understanding},
|
|
||||||
journal = {CoRR},
|
|
||||||
volume = {abs/1810.04805},
|
|
||||||
year = {2018},
|
|
||||||
url = {http://arxiv.org/abs/1810.04805},
|
|
||||||
archivePrefix = {arXiv},
|
|
||||||
eprint = {1810.04805},
|
|
||||||
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
|
|
||||||
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
|
|
||||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
||||||
}
|
|
||||||
```
|
|
BIN
flax_model.msgpack (Stored with Git LFS)
BIN
flax_model.msgpack (Stored with Git LFS)
Binary file not shown.
BIN
model.safetensors (Stored with Git LFS)
BIN
model.safetensors (Stored with Git LFS)
Binary file not shown.
|
@ -0,0 +1,11 @@
|
||||||
|
{
|
||||||
|
"caveats_and_recommendations": {},
|
||||||
|
"ethical_considerations": {},
|
||||||
|
"evaluation_data": {},
|
||||||
|
"factors": {},
|
||||||
|
"intended_use": {},
|
||||||
|
"metrics": {},
|
||||||
|
"model_details": {},
|
||||||
|
"quantitative_analyses": {},
|
||||||
|
"training_data": {}
|
||||||
|
}
|
Loading…
Reference in New Issue