From 2c372c0aa6ffe871223a0663c0e9e3f1830c3fe0 Mon Sep 17 00:00:00 2001 From: harshit katyal Date: Sun, 12 Dec 2021 20:43:57 +0000 Subject: [PATCH] Update README.md --- README.md | 75 ++++++++++++++++++++----------------------------------- 1 file changed, 27 insertions(+), 48 deletions(-) diff --git a/README.md b/README.md index 5a3c225..8c4abef 100644 --- a/README.md +++ b/README.md @@ -1,25 +1,24 @@ --- language: en -datasets: Toronto emotional speech set (TESS)(https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess) +datasets: +- aesdd tags: - audio -- automatic-speech-recognition +- audio-classification - speech -- speech-emotion-recognition license: apache-2.0 --- -# Emotion Recognition in Speech using Wav2Vec 2.0 -## How to use -### Requirements -```bash +~~~ # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa -``` -### Prediction -```python +!git clone https://github.com/m3hrdadfi/soxan +cd soxan +~~~ +# prediction +~~~ import torch import torch.nn as nn import torch.nn.functional as F @@ -29,16 +28,16 @@ import librosa import IPython.display as ipd import numpy as np import pandas as pd -``` -```python +~~~ +~~~ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" +model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) -``` -```python +~~~ +~~~ def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) @@ -53,37 +52,17 @@ def predict(path, sampling_rate): scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs -``` -```python -path = "/path/to/disgust.wav" +~~~ +# prediction +~~~ +# path for a sample +path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate) -``` -```bash -[ -{'Emotion': 'anger', 'Score': '12.2%'}, -{'Emotion': 'disgust', 'Score': '78.8%'}, -{'Emotion': 'fear', 'Score': '7.2%'}, -{'Emotion': 'happiness', 'Score': '1.3%'}, -{'Emotion': 'sadness', 'Score': '1.5%'} -] -``` - - -## Evaluation -The following tables summarize the scores obtained by model overall and per each class. - - -| Emotions | precision | recall | f1-score | accuracy | -|-----------|-----------|--------|----------|----------| -| anger | 0.82 | 1.00 | 0.81 | | -| disgust | 0.85 | 0.96 | 0.85 | | -| fear | 0.78 | 0.88 | 0.80 | | -| happiness | 0.84 | 0.71 | 0.78 | | -| sadness | 0.86 | 1.00 | 0.79 | | -| | | | Overall | 0.806 | - - -## - -Colab Notebook -https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing \ No newline at end of file +~~~ +~~~ +[{'Emotion': 'anger', 'Score': '98.3%'}, + {'Emotion': 'disgust', 'Score': '0.0%'}, + {'Emotion': 'fear', 'Score': '0.4%'}, + {'Emotion': 'happiness', 'Score': '0.7%'}, + {'Emotion': 'sadness', 'Score': '0.5%'}] + ~~~ \ No newline at end of file