Update to COCO example image
This commit is contained in:
parent
5471909625
commit
91e26673e9
23
README.md
23
README.md
|
@ -31,24 +31,21 @@ fine-tuned versions on a task that interests you.
|
|||
|
||||
### How to use
|
||||
|
||||
Here is how to use this model to classify an image of CIFAR-100 into one of the 1,000 ImageNet classes:
|
||||
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
||||
|
||||
```python
|
||||
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
||||
from datasets import load_dataset
|
||||
import numpy as np
|
||||
|
||||
from PIL import Image
|
||||
import requests
|
||||
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
|
||||
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
||||
|
||||
dataset = load_dataset("cifar100", split='test')
|
||||
image = np.asarray(dataset[2]['img'], dtype=np.uint8)
|
||||
image = np.moveaxis(image, source=-1, destination=0) # change from (H, W, C) to (C, H, W)
|
||||
|
||||
pixel_values = feature_extractor(image)
|
||||
outputs = model(pixel_values)
|
||||
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
||||
inputs = feature_extractor(images=image)
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits
|
||||
predicted_class = logits.argmax(-1)
|
||||
# model predicts one of the 1000 ImageNet classes
|
||||
predicted_class = logits.argmax(-1).item()
|
||||
```
|
||||
|
||||
Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.
|
||||
|
|
Loading…
Reference in New Issue