Compare commits
10 Commits
7cb3c68845
...
40d588fdab
Author | SHA1 | Date |
---|---|---|
|
40d588fdab | |
|
811b08dd23 | |
|
2c158316e0 | |
|
e1cf0d30f9 | |
|
664f09eeb1 | |
|
9ad83522e4 | |
|
c621f6fce8 | |
|
cc7a0807ea | |
|
bd2b9fb39a | |
|
038031b8d8 |
|
@ -0,0 +1,74 @@
|
|||
---
|
||||
language: en
|
||||
tags:
|
||||
- summarization
|
||||
---
|
||||
|
||||
### Pegasus Models
|
||||
See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html)
|
||||
|
||||
Original TF 1 code [here](https://github.com/google-research/pegasus)
|
||||
|
||||
Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019
|
||||
|
||||
Maintained by: [@sshleifer](https://twitter.com/sam_shleifer)
|
||||
|
||||
Task: Summarization
|
||||
|
||||
The following is copied from the authors' README.
|
||||
|
||||
# Mixed & Stochastic Checkpoints
|
||||
|
||||
We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table.
|
||||
|
||||
| dataset | C4 | HugeNews | Mixed & Stochastic|
|
||||
| ---- | ---- | ---- | ----|
|
||||
| xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64|
|
||||
| cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30|
|
||||
| newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18|
|
||||
| multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95|
|
||||
| gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76|
|
||||
| wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *|
|
||||
| reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94|
|
||||
| big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *|
|
||||
| arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67|
|
||||
| pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25|
|
||||
| aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51|
|
||||
| billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59|
|
||||
|
||||
The "Mixed & Stochastic" model has the following changes:
|
||||
- trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
|
||||
- trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
|
||||
- the model uniformly sample a gap sentence ratio between 15% and 45%.
|
||||
- importance sentences are sampled using a 20% uniform noise to importance scores.
|
||||
- the sentencepiece tokenizer is updated to be able to encode newline character.
|
||||
|
||||
|
||||
(*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data:
|
||||
- wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information.
|
||||
- we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS.
|
||||
|
||||
|
||||
The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper):
|
||||
|
||||
|
||||
trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
|
||||
trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
|
||||
the model uniformly sample a gap sentence ratio between 15% and 45%.
|
||||
importance sentences are sampled using a 20% uniform noise to importance scores.
|
||||
the sentencepiece tokenizer is updated to be able to encode newline character.
|
||||
|
||||
|
||||
Citation
|
||||
```
|
||||
|
||||
|
||||
@misc{zhang2019pegasus,
|
||||
title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization},
|
||||
author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu},
|
||||
year={2019},
|
||||
eprint={1912.08777},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CL}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,49 @@
|
|||
{
|
||||
"activation_dropout": 0.1,
|
||||
"activation_function": "relu",
|
||||
"add_bias_logits": false,
|
||||
"add_final_layer_norm": true,
|
||||
"architectures": [
|
||||
"PegasusForConditionalGeneration"
|
||||
],
|
||||
"attention_dropout": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classif_dropout": 0.0,
|
||||
"d_model": 1024,
|
||||
"decoder_attention_heads": 16,
|
||||
"decoder_ffn_dim": 4096,
|
||||
"decoder_layerdrop": 0.0,
|
||||
"decoder_layers": 16,
|
||||
"dropout": 0.1,
|
||||
"encoder_attention_heads": 16,
|
||||
"encoder_ffn_dim": 4096,
|
||||
"encoder_layerdrop": 0.0,
|
||||
"encoder_layers": 16,
|
||||
"eos_token_id": 1,
|
||||
"extra_pos_embeddings": 1,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1",
|
||||
"2": "LABEL_2"
|
||||
},
|
||||
"init_std": 0.02,
|
||||
"is_encoder_decoder": true,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1,
|
||||
"LABEL_2": 2
|
||||
},
|
||||
"length_penalty": 0.8,
|
||||
"max_length": 128,
|
||||
"max_position_embeddings": 1024,
|
||||
"min_length": 32,
|
||||
"model_type": "pegasus",
|
||||
"normalize_before": true,
|
||||
"normalize_embedding": false,
|
||||
"num_beams": 8,
|
||||
"num_hidden_layers": 16,
|
||||
"pad_token_id": 0,
|
||||
"scale_embedding": true,
|
||||
"static_position_embeddings": true,
|
||||
"vocab_size": 96103
|
||||
}
|
|
@ -0,0 +1,13 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 0,
|
||||
"decoder_start_token_id": 0,
|
||||
"eos_token_id": 1,
|
||||
"forced_eos_token_id": 1,
|
||||
"length_penalty": 0.8,
|
||||
"max_length": 128,
|
||||
"min_length": 32,
|
||||
"num_beams": 8,
|
||||
"pad_token_id": 0,
|
||||
"transformers_version": "4.27.0.dev0"
|
||||
}
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
Loading…
Reference in New Issue