diff --git a/README.md b/README.md index 98b453e..403c0a8 100644 --- a/README.md +++ b/README.md @@ -58,4 +58,47 @@ To transcribe audio files the model can be used as a standalone acoustic model a # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) - ``` \ No newline at end of file + ``` + + ## Evaluation + + This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60-self** on LibriSpeech's "clean" and "other" test data. + +```python +from datasets import load_dataset +from transformers import Wav2Vec2ForMaskedLM, Wav2Vec2Tokenizer +import soundfile as sf +import torch +from jiwer import wer + + +librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") + +model = Wav2Vec2ForMaskedLM.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") +tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h-lv60-self") + +def map_to_array(batch): + speech, _ = sf.read(batch["file"]) + batch["speech"] = speech + return batch + +librispeech_eval = librispeech_eval.map(map_to_array) + +def map_to_pred(batch): + input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values + with torch.no_grad(): + logits = model(input_values.to("cuda")).logits + + predicted_ids = torch.argmax(logits, dim=-1) + transcription = tokenizer.batch_decode(predicted_ids) + batch["transcription"] = transcription + return batch + +result = librispeech_eval.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"]) + +print("WER:", wer(result["text"], result["transcription"])) +``` + +| "clean" | "other" | +|---|---| +| 2.2 | 5.2 | \ No newline at end of file