Compare commits
10 Commits
f1f16470cc
...
22aad52d43
Author | SHA1 | Date |
---|---|---|
|
22aad52d43 | |
|
7061117562 | |
|
55bb62306c | |
|
7ee7fd3d11 | |
|
c0b7a4ab9d | |
|
5962bda7bb | |
|
8833830560 | |
|
5e3d456ec1 | |
|
7717449af4 | |
|
6b154c5c31 |
|
@ -15,3 +15,4 @@
|
|||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
|
|
70
README.md
70
README.md
|
@ -5,12 +5,44 @@ datasets:
|
|||
tags:
|
||||
- audio
|
||||
- automatic-speech-recognition
|
||||
- hf-asr-leaderboard
|
||||
license: apache-2.0
|
||||
widget:
|
||||
- label: Librispeech sample 1
|
||||
- example_title: Librispeech sample 1
|
||||
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
||||
- label: Librispeech sample 2
|
||||
- example_title: Librispeech sample 2
|
||||
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
||||
model-index:
|
||||
- name: wav2vec2-base-960h
|
||||
results:
|
||||
- task:
|
||||
name: Automatic Speech Recognition
|
||||
type: automatic-speech-recognition
|
||||
dataset:
|
||||
name: LibriSpeech (clean)
|
||||
type: librispeech_asr
|
||||
config: clean
|
||||
split: test
|
||||
args:
|
||||
language: en
|
||||
metrics:
|
||||
- name: Test WER
|
||||
type: wer
|
||||
value: 3.4
|
||||
- task:
|
||||
name: Automatic Speech Recognition
|
||||
type: automatic-speech-recognition
|
||||
dataset:
|
||||
name: LibriSpeech (other)
|
||||
type: librispeech_asr
|
||||
config: other
|
||||
split: test
|
||||
args:
|
||||
language: en
|
||||
metrics:
|
||||
- name: Test WER
|
||||
type: wer
|
||||
value: 8.6
|
||||
---
|
||||
|
||||
# Wav2Vec2-Base-960h
|
||||
|
@ -36,34 +68,26 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
|
|||
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
||||
|
||||
```python
|
||||
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC
|
||||
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
||||
from datasets import load_dataset
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
# load model and tokenizer
|
||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
|
||||
# define function to read in sound file
|
||||
def map_to_array(batch):
|
||||
speech, _ = sf.read(batch["file"])
|
||||
batch["speech"] = speech
|
||||
return batch
|
||||
|
||||
# load dummy dataset and read soundfiles
|
||||
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
||||
ds = ds.map(map_to_array)
|
||||
|
||||
# tokenize
|
||||
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
||||
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
|
||||
|
||||
# retrieve logits
|
||||
logits = model(input_values).logits
|
||||
|
||||
# take argmax and decode
|
||||
predicted_ids = torch.argmax(logits, dim=-1)
|
||||
transcription = tokenizer.batch_decode(predicted_ids)
|
||||
transcription = processor.batch_decode(predicted_ids)
|
||||
```
|
||||
|
||||
## Evaluation
|
||||
|
@ -72,8 +96,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
||||
import soundfile as sf
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
import torch
|
||||
from jiwer import wer
|
||||
|
||||
|
@ -81,26 +104,19 @@ from jiwer import wer
|
|||
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
||||
|
||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
|
||||
def map_to_array(batch):
|
||||
speech, _ = sf.read(batch["file"])
|
||||
batch["speech"] = speech
|
||||
return batch
|
||||
|
||||
librispeech_eval = librispeech_eval.map(map_to_array)
|
||||
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
|
||||
def map_to_pred(batch):
|
||||
input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values
|
||||
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
|
||||
with torch.no_grad():
|
||||
logits = model(input_values.to("cuda")).logits
|
||||
|
||||
predicted_ids = torch.argmax(logits, dim=-1)
|
||||
transcription = tokenizer.batch_decode(predicted_ids)
|
||||
transcription = processor.batch_decode(predicted_ids)
|
||||
batch["transcription"] = transcription
|
||||
return batch
|
||||
|
||||
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
|
||||
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
|
||||
|
||||
print("WER:", wer(result["text"], result["transcription"]))
|
||||
```
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue