Compare commits
10 Commits
f1f16470cc
...
22aad52d43
Author | SHA1 | Date |
---|---|---|
|
22aad52d43 | |
|
7061117562 | |
|
55bb62306c | |
|
7ee7fd3d11 | |
|
c0b7a4ab9d | |
|
5962bda7bb | |
|
8833830560 | |
|
5e3d456ec1 | |
|
7717449af4 | |
|
6b154c5c31 |
|
@ -15,3 +15,4 @@
|
||||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||||
|
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||||
|
|
70
README.md
70
README.md
|
@ -5,12 +5,44 @@ datasets:
|
||||||
tags:
|
tags:
|
||||||
- audio
|
- audio
|
||||||
- automatic-speech-recognition
|
- automatic-speech-recognition
|
||||||
|
- hf-asr-leaderboard
|
||||||
license: apache-2.0
|
license: apache-2.0
|
||||||
widget:
|
widget:
|
||||||
- label: Librispeech sample 1
|
- example_title: Librispeech sample 1
|
||||||
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
||||||
- label: Librispeech sample 2
|
- example_title: Librispeech sample 2
|
||||||
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
||||||
|
model-index:
|
||||||
|
- name: wav2vec2-base-960h
|
||||||
|
results:
|
||||||
|
- task:
|
||||||
|
name: Automatic Speech Recognition
|
||||||
|
type: automatic-speech-recognition
|
||||||
|
dataset:
|
||||||
|
name: LibriSpeech (clean)
|
||||||
|
type: librispeech_asr
|
||||||
|
config: clean
|
||||||
|
split: test
|
||||||
|
args:
|
||||||
|
language: en
|
||||||
|
metrics:
|
||||||
|
- name: Test WER
|
||||||
|
type: wer
|
||||||
|
value: 3.4
|
||||||
|
- task:
|
||||||
|
name: Automatic Speech Recognition
|
||||||
|
type: automatic-speech-recognition
|
||||||
|
dataset:
|
||||||
|
name: LibriSpeech (other)
|
||||||
|
type: librispeech_asr
|
||||||
|
config: other
|
||||||
|
split: test
|
||||||
|
args:
|
||||||
|
language: en
|
||||||
|
metrics:
|
||||||
|
- name: Test WER
|
||||||
|
type: wer
|
||||||
|
value: 8.6
|
||||||
---
|
---
|
||||||
|
|
||||||
# Wav2Vec2-Base-960h
|
# Wav2Vec2-Base-960h
|
||||||
|
@ -36,34 +68,26 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
|
||||||
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
import soundfile as sf
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# load model and tokenizer
|
# load model and tokenizer
|
||||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||||||
|
|
||||||
# define function to read in sound file
|
|
||||||
def map_to_array(batch):
|
|
||||||
speech, _ = sf.read(batch["file"])
|
|
||||||
batch["speech"] = speech
|
|
||||||
return batch
|
|
||||||
|
|
||||||
# load dummy dataset and read soundfiles
|
# load dummy dataset and read soundfiles
|
||||||
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
||||||
ds = ds.map(map_to_array)
|
|
||||||
|
|
||||||
# tokenize
|
# tokenize
|
||||||
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
|
||||||
|
|
||||||
# retrieve logits
|
# retrieve logits
|
||||||
logits = model(input_values).logits
|
logits = model(input_values).logits
|
||||||
|
|
||||||
# take argmax and decode
|
# take argmax and decode
|
||||||
predicted_ids = torch.argmax(logits, dim=-1)
|
predicted_ids = torch.argmax(logits, dim=-1)
|
||||||
transcription = tokenizer.batch_decode(predicted_ids)
|
transcription = processor.batch_decode(predicted_ids)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Evaluation
|
## Evaluation
|
||||||
|
@ -72,8 +96,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||||
import soundfile as sf
|
|
||||||
import torch
|
import torch
|
||||||
from jiwer import wer
|
from jiwer import wer
|
||||||
|
|
||||||
|
@ -81,26 +104,19 @@ from jiwer import wer
|
||||||
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
||||||
|
|
||||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
||||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||||
|
|
||||||
def map_to_array(batch):
|
|
||||||
speech, _ = sf.read(batch["file"])
|
|
||||||
batch["speech"] = speech
|
|
||||||
return batch
|
|
||||||
|
|
||||||
librispeech_eval = librispeech_eval.map(map_to_array)
|
|
||||||
|
|
||||||
def map_to_pred(batch):
|
def map_to_pred(batch):
|
||||||
input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values
|
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = model(input_values.to("cuda")).logits
|
logits = model(input_values.to("cuda")).logits
|
||||||
|
|
||||||
predicted_ids = torch.argmax(logits, dim=-1)
|
predicted_ids = torch.argmax(logits, dim=-1)
|
||||||
transcription = tokenizer.batch_decode(predicted_ids)
|
transcription = processor.batch_decode(predicted_ids)
|
||||||
batch["transcription"] = transcription
|
batch["transcription"] = transcription
|
||||||
return batch
|
return batch
|
||||||
|
|
||||||
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
|
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
|
||||||
|
|
||||||
print("WER:", wer(result["text"], result["transcription"]))
|
print("WER:", wer(result["text"], result["transcription"]))
|
||||||
```
|
```
|
||||||
|
|
Binary file not shown.
Loading…
Reference in New Issue