Update README.md
This commit is contained in:
parent
f1f16470cc
commit
6b154c5c31
16
README.md
16
README.md
|
@ -36,13 +36,13 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
|
||||||
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# load model and tokenizer
|
# load model and tokenizer
|
||||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||||||
|
|
||||||
# define function to read in sound file
|
# define function to read in sound file
|
||||||
|
@ -56,14 +56,14 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
||||||
ds = ds.map(map_to_array)
|
ds = ds.map(map_to_array)
|
||||||
|
|
||||||
# tokenize
|
# tokenize
|
||||||
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
input_values = processor(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
||||||
|
|
||||||
# retrieve logits
|
# retrieve logits
|
||||||
logits = model(input_values).logits
|
logits = model(input_values).logits
|
||||||
|
|
||||||
# take argmax and decode
|
# take argmax and decode
|
||||||
predicted_ids = torch.argmax(logits, dim=-1)
|
predicted_ids = torch.argmax(logits, dim=-1)
|
||||||
transcription = tokenizer.batch_decode(predicted_ids)
|
transcription = processor.batch_decode(predicted_ids)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Evaluation
|
## Evaluation
|
||||||
|
@ -72,7 +72,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
import torch
|
import torch
|
||||||
from jiwer import wer
|
from jiwer import wer
|
||||||
|
@ -81,7 +81,7 @@ from jiwer import wer
|
||||||
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
||||||
|
|
||||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
||||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||||
|
|
||||||
def map_to_array(batch):
|
def map_to_array(batch):
|
||||||
speech, _ = sf.read(batch["file"])
|
speech, _ = sf.read(batch["file"])
|
||||||
|
@ -91,12 +91,12 @@ def map_to_array(batch):
|
||||||
librispeech_eval = librispeech_eval.map(map_to_array)
|
librispeech_eval = librispeech_eval.map(map_to_array)
|
||||||
|
|
||||||
def map_to_pred(batch):
|
def map_to_pred(batch):
|
||||||
input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values
|
input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = model(input_values.to("cuda")).logits
|
logits = model(input_values.to("cuda")).logits
|
||||||
|
|
||||||
predicted_ids = torch.argmax(logits, dim=-1)
|
predicted_ids = torch.argmax(logits, dim=-1)
|
||||||
transcription = tokenizer.batch_decode(predicted_ids)
|
transcription = processor.batch_decode(predicted_ids)
|
||||||
batch["transcription"] = transcription
|
batch["transcription"] = transcription
|
||||||
return batch
|
return batch
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue