upload all files
This commit is contained in:
parent
544b258030
commit
0b362f54b7
|
@ -0,0 +1,96 @@
|
|||
# Wav2Vec2 Acoustic Model fine-tuned on LibriSpeech
|
||||
|
||||
Original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
|
||||
|
||||
Paper: https://arxiv.org/abs/2006.11477
|
||||
|
||||
## Usage
|
||||
|
||||
Make sure you are working on [this branch](https://github.com/huggingface/transformers/tree/add_wav2vec) (which will be merged to master soon hopefully) of transformers:
|
||||
|
||||
```bash
|
||||
$ git checkout add_wav2vec
|
||||
```
|
||||
|
||||
In the following, we'll show a simple example of how the model can be used for automatic speech recognition.
|
||||
|
||||
First, let's load the model
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForMaskedLM
|
||||
|
||||
model = AutoModelForMaskedLM.from_pretrained("patrickvonplaten/wav2vec2-base-960h")
|
||||
|
||||
```
|
||||
|
||||
Next, let's load a dummy librispeech dataset
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
import soundfile as sf
|
||||
|
||||
libri_speech_dummy = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
||||
|
||||
def map_to_array(batch):
|
||||
speech_array, _ = sf.read(batch["file"])
|
||||
batch["speech"] = speech_array
|
||||
return batch
|
||||
|
||||
libri_speech_dummy = libri_speech_dummy.map(map_to_array, remove_columns=["file"])
|
||||
|
||||
# check out dataset
|
||||
print(libri_speech_dummy)
|
||||
|
||||
input_speech_16kHz = libri_speech_dummy[2]["speech"]
|
||||
expected_trans = libri_speech_dummy[2]["text"]
|
||||
```
|
||||
|
||||
Cool, now we can run an inference pass to retrieve the logits:
|
||||
|
||||
```python
|
||||
import torch
|
||||
logits = model(torch.tensor(input_speech_16kHz)[None, :])
|
||||
|
||||
# use highest probability logits
|
||||
pred_ids = torch.argmax(logits[0], axis=-1)
|
||||
```
|
||||
|
||||
Finally, let's decode the prediction.
|
||||
Let's create a simple CTC-Decoder:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from itertools import groupby
|
||||
|
||||
class Decoder:
|
||||
def __init__(self, json_dict):
|
||||
self.dict = json_dict
|
||||
self.look_up = np.asarray(list(self.dict.keys()))
|
||||
|
||||
def decode(self, ids):
|
||||
converted_tokens = self.look_up[ids]
|
||||
fused_tokens = [tok[0] for tok in groupby(converted_tokens)]
|
||||
output = ' '.join(''.join(''.join(fused_tokens).split("<s>")).split("|"))
|
||||
return output
|
||||
```
|
||||
|
||||
and instantiate with the corresponding dict.
|
||||
|
||||
```python
|
||||
# hard-coded json dict taken from: https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
|
||||
json_dict = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}
|
||||
|
||||
decoder = Decoder(json_dict=json_dict)
|
||||
```
|
||||
|
||||
and decode the result
|
||||
|
||||
```python
|
||||
pred_trans = decoder.decode(pred_ids)
|
||||
|
||||
print("Prediction:\n", pred_trans)
|
||||
print("\n" + 50 * "=" + "\n")
|
||||
print("Correct result:\n", expected_trans)
|
||||
```
|
||||
|
||||
🎉
|
|
@ -0,0 +1,51 @@
|
|||
{
|
||||
"architectures": [
|
||||
"Wav2Vec2ForMaskedLM"
|
||||
],
|
||||
"conv_bias": false,
|
||||
"conv_dim": [
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"conv_kernel": [
|
||||
10,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"conv_stride": [
|
||||
5,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"do_stable_layer_norm": false,
|
||||
"feat_extract_activation": "gelu",
|
||||
"feat_extract_dropout": 0.0,
|
||||
"feat_extract_norm": "group",
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "wav2vec2",
|
||||
"num_attention_heads": 12,
|
||||
"num_conv_pos_embedding_groups": 16,
|
||||
"num_conv_pos_embeddings": 128,
|
||||
"num_feat_extract_layers": 7,
|
||||
"num_hidden_layers": 12,
|
||||
"transformers_version": "4.3.0.dev0",
|
||||
"vocab_size": 32
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
|
@ -0,0 +1 @@
|
|||
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false}
|
|
@ -0,0 +1 @@
|
|||
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}
|
Loading…
Reference in New Issue