Update README.md
This commit is contained in:
parent
8c011b6777
commit
5f009df218
10
README.md
10
README.md
|
@ -34,17 +34,17 @@ fine-tuned versions on a task that interests you.
|
||||||
Here is how to use this model:
|
Here is how to use this model:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
# load MaskFormer fine-tuned on COCO panoptic segmentation
|
# load MaskFormer fine-tuned on COCO panoptic segmentation
|
||||||
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-coco")
|
processor = MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-large-coco")
|
||||||
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-coco")
|
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-coco")
|
||||||
|
|
||||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||||
image = Image.open(requests.get(url, stream=True).raw)
|
image = Image.open(requests.get(url, stream=True).raw)
|
||||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
inputs = processor(images=image, return_tensors="pt")
|
||||||
|
|
||||||
outputs = model(**inputs)
|
outputs = model(**inputs)
|
||||||
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
|
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
|
||||||
|
@ -52,8 +52,8 @@ outputs = model(**inputs)
|
||||||
class_queries_logits = outputs.class_queries_logits
|
class_queries_logits = outputs.class_queries_logits
|
||||||
masks_queries_logits = outputs.masks_queries_logits
|
masks_queries_logits = outputs.masks_queries_logits
|
||||||
|
|
||||||
# you can pass them to feature_extractor for postprocessing
|
# you can pass them to processor for postprocessing
|
||||||
result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
||||||
# we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs)
|
# we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs)
|
||||||
predicted_panoptic_map = result["segmentation"]
|
predicted_panoptic_map = result["segmentation"]
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in New Issue