Update README.md
This commit is contained in:
parent
a802057cbe
commit
5794372334
30
README.md
30
README.md
|
@ -29,24 +29,24 @@ fine-tuned versions on a task that interests you.
|
|||
Here is how to use this model:
|
||||
|
||||
```python
|
||||
>>> from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
>>> feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-base-ade")
|
||||
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade")
|
||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
|
||||
>>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade")
|
||||
>>> outputs = model(**inputs)
|
||||
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
|
||||
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
|
||||
>>> class_queries_logits = outputs.class_queries_logits
|
||||
>>> masks_queries_logits = outputs.masks_queries_logits
|
||||
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-ade")
|
||||
outputs = model(**inputs)
|
||||
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
|
||||
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
|
||||
class_queries_logits = outputs.class_queries_logits
|
||||
masks_queries_logits = outputs.masks_queries_logits
|
||||
|
||||
>>> # you can pass them to feature_extractor for postprocessing
|
||||
>>> predicted_semantic_map = feature_extractor.post_process_semantic_segmentation(outputs)[0]
|
||||
# you can pass them to feature_extractor for postprocessing
|
||||
predicted_semantic_map = feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
||||
```
|
||||
|
||||
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer).
|
Loading…
Reference in New Issue