Upload README.md
This commit is contained in:
parent
9375d07d28
commit
16ebe37986
|
@ -0,0 +1,64 @@
|
||||||
|
---
|
||||||
|
license: apache-2.0
|
||||||
|
tags:
|
||||||
|
- vision
|
||||||
|
- image-segmentatiom
|
||||||
|
|
||||||
|
datasets:
|
||||||
|
- ade-20k
|
||||||
|
|
||||||
|
widget:
|
||||||
|
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
|
||||||
|
example_title: House
|
||||||
|
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
|
||||||
|
example_title: Castle
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# Mask
|
||||||
|
|
||||||
|
Mask model trained on ade-20k. It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
|
||||||
|
|
||||||
|
Disclaimer: The team releasing Mask did not write a model card for this model so this model card has been written by the Hugging Face team.
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
MaskFormer addresses semantic segmentation with a mask classification paradigm instead.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=maskformer) to look for
|
||||||
|
fine-tuned versions on a task that interests you.
|
||||||
|
|
||||||
|
### How to use
|
||||||
|
|
||||||
|
Here is how to use this model:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
||||||
|
>>> from PIL import Image
|
||||||
|
>>> import requests
|
||||||
|
|
||||||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||||
|
>>> feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-base-ade")
|
||||||
|
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
||||||
|
|
||||||
|
>>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade")
|
||||||
|
>>> outputs = model(**inputs)
|
||||||
|
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
|
||||||
|
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
|
||||||
|
>>> class_queries_logits = outputs.class_queries_logits
|
||||||
|
>>> masks_queries_logits = outputs.masks_queries_logits
|
||||||
|
|
||||||
|
>>> # you can pass them to feature_extractor for postprocessing
|
||||||
|
>>> output = feature_extractor.post_process_segmentation(outputs)
|
||||||
|
>>> output = feature_extractor.post_process_semantic_segmentation(outputs)
|
||||||
|
>>> output = feature_extractor.post_process_panoptic_segmentation(outputs)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer).
|
Loading…
Reference in New Issue