MaskFormer model trained on ADE20k semantic segmentation. It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
MaskFormer addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation.
You can use this particular checkpoint for semantic segmentation. See the [model hub](https://huggingface.co/models?search=maskformer) to look for other