Update to image processor
This commit is contained in:
parent
cc12a6ee9d
commit
c6715f5703
15
README.md
15
README.md
|
@ -37,7 +37,7 @@ You can use the raw model for object detection. See the [model hub](https://hugg
|
|||
Here is how to use this model:
|
||||
|
||||
```python
|
||||
from transformers import DetrFeatureExtractor, DetrForObjectDetection
|
||||
from transformers import DetrImageProcessor, DetrForObjectDetection
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
@ -45,24 +45,23 @@ import requests
|
|||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-101")
|
||||
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101")
|
||||
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101")
|
||||
|
||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
|
||||
# convert outputs (bounding boxes and class logits) to COCO API
|
||||
# let's only keep detections with score > 0.9
|
||||
target_sizes = torch.tensor([image.size[::-1]])
|
||||
results = feature_extractor.post_process(outputs, target_sizes=target_sizes)[0]
|
||||
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
||||
|
||||
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
||||
box = [round(i, 2) for i in box.tolist()]
|
||||
# let's only keep detections with score > 0.9
|
||||
if score > 0.9:
|
||||
print(
|
||||
print(
|
||||
f"Detected {model.config.id2label[label.item()]} with confidence "
|
||||
f"{round(score.item(), 3)} at location {box}"
|
||||
)
|
||||
)
|
||||
```
|
||||
This should output (something along the lines of):
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue