ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition is a forked repo from huggingface. License: apache-2-0
Go to file
Enrique Hernández Calabrés 17cf17c4ec Update README.md 2021-09-21 20:59:32 +00:00
runs Model re-trained on ravdess dataset with new Wav2VecForSequenceClassification feature 2021-09-21 20:54:52 +02:00
.gitattributes initial commit 2021-07-14 08:33:09 +00:00
.gitignore wav2vec2-lg-xlsr-en-speech-emotion-recognition 2021-07-14 09:21:38 +00:00
README.md Update README.md 2021-09-21 20:59:32 +00:00
config.json Model re-trained on ravdess dataset with new Wav2VecForSequenceClassification feature 2021-09-21 20:54:52 +02:00
preprocessor_config.json wav2vec2-lg-xlsr-en-speech-emotion-recognition 2021-07-14 09:21:38 +00:00
pytorch_model.bin wav2vec2-lg-xlsr-en-speech-emotion-recognition 2021-07-14 09:21:38 +00:00
training_args.bin wav2vec2-lg-xlsr-en-speech-emotion-recognition 2021-07-14 09:21:38 +00:00

README.md

license tags metrics model_index
apache-2.0
generated_from_trainer
accuracy
name
wav2vec2-lg-xlsr-en-speech-emotion-recognition

Speech Emotion Recognition By Fine-Tuning Wav2Vec 2.0

The model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english for a Speech Emotion Recognition (SER) task.

The dataset used to fine-tune the original pre-trained model is the RAVDESS dataset. This dataset provides 1440 samples of recordings from actors performing on 8 different emotions in English, which are:

emotions = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised']

It achieves the following results on the evaluation set:

  • Loss: 0.5023
  • Accuracy: 0.8223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0752 0.21 30 2.0505 0.1359
2.0119 0.42 60 1.9340 0.2474
1.8073 0.63 90 1.5169 0.3902
1.5418 0.84 120 1.2373 0.5610
1.1432 1.05 150 1.1579 0.5610
0.9645 1.26 180 0.9610 0.6167
0.8811 1.47 210 0.8063 0.7178
0.8756 1.68 240 0.7379 0.7352
0.8208 1.89 270 0.6839 0.7596
0.7118 2.1 300 0.6664 0.7735
0.4261 2.31 330 0.6058 0.8014
0.4394 2.52 360 0.5754 0.8223
0.4581 2.72 390 0.4719 0.8467
0.3967 2.93 420 0.5023 0.8223

Contact

Any doubt, contact me on Twitter (GitHub repo soon).

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.9.0
  • Tokenizers 0.10.3