This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model.
Haystack is an NLP framework by deepset. You can use this model in a Hasytack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system)
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
<p>For more info on Haystack, visit our <strong><ahref="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><ahref="https://haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><aclass="h-7"href="https://haystack.deepset.ai/community/join"><imgalt="slack"class="h-7 inline-block m-0"style="margin: 0"src="https://huggingface.co/spaces/deepset/README/resolve/main/Slack_RGB.png"/>community open to everyone!</a></strong></p>