diff --git a/README.md b/README.md new file mode 100644 index 0000000..970d158 --- /dev/null +++ b/README.md @@ -0,0 +1,106 @@ +# roberta-base-squad2 for QA on COVID-19 + +## Overview +**Language model:** deepset/roberta-base-squad2 +**Language:** English +**Downstream-task:** Extractive QA +**Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json) +**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering_crossvalidation.py) in [FARM](https://github.com/deepset-ai/FARM) +**Infrastructure**: Tesla v100 + +## Hyperparameters +``` +batch_size = 24 +n_epochs = 3 +base_LM_model = "deepset/roberta-base-squad2" +max_seq_len = 384 +learning_rate = 3e-5 +lr_schedule = LinearWarmup +warmup_proportion = 0.1 +doc_stride = 128 +xval_folds = 5 +dev_split = 0 +no_ans_boost = -100 +``` + +## Performance +5-fold cross-validation on the data set led to the following results: + +**Single EM-Scores:** [0.222, 0.123, 0.234, 0.159, 0.158] +**Single F1-Scores:** [0.476, 0.493, 0.599, 0.461, 0.465] +**Single top\_3\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777] +**XVAL EM:** 0.17890995260663506 +**XVAL f1:** 0.49925444207319924 +**XVAL top\_3\_recall:** 0.8021327014218009 + +This model is the model obtained from the **third** fold of the cross-validation. + +## Usage + +### In Transformers +```python +from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline + + +model_name = "deepset/roberta-base-squad2-covid" + +# a) Get predictions +nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) +QA_input = { + 'question': 'Why is model conversion important?', + 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' +} +res = nlp(QA_input) + +# b) Load model & tokenizer +model = AutoModelForQuestionAnswering.from_pretrained(model_name) +tokenizer = AutoTokenizer.from_pretrained(model_name) +``` + +### In FARM +```python +from farm.modeling.adaptive_model import AdaptiveModel +from farm.modeling.tokenization import Tokenizer +from farm.infer import Inferencer + +model_name = "deepset/roberta-base-squad2-covid" + +# a) Get predictions +nlp = Inferencer.load(model_name, task_type="question_answering") +QA_input = [{"questions": ["Why is model conversion important?"], + "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] +res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) + +# b) Load model & tokenizer +model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") +tokenizer = Tokenizer.load(model_name) +``` + +### In haystack +For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): +```python +reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-covid") +# or +reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2-covid") +``` + +## Authors +Branden Chan: `branden.chan [at] deepset.ai` +Timo Möller: `timo.moeller [at] deepset.ai` +Malte Pietsch: `malte.pietsch [at] deepset.ai` +Tanay Soni: `tanay.soni [at] deepset.ai` +Bogdan Kostić: `bogdan.kostic [at] deepset.ai` + +## About us +![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png) + +We bring NLP to the industry via open source! +Our focus: Industry specific language models & large scale QA systems. + +Some of our work: +- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) +- [FARM](https://github.com/deepset-ai/FARM) +- [Haystack](https://github.com/deepset-ai/haystack/) + +Get in touch: +[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai) \ No newline at end of file