deepset/minilm-uncased-squad2 is a forked repo from huggingface. License: cc-by-4-0
Go to file
Julien Chaumond fc2657c72c Migrate model card from transformers-repo
Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/deepset/minilm-uncased-squad2/README.md
2020-12-11 22:38:04 +01:00
.gitattributes initial commit 2020-07-20 14:13:30 +00:00
README.md Migrate model card from transformers-repo 2020-12-11 22:38:04 +01:00
config.json Update config.json 2020-07-20 14:13:34 +00:00
pytorch_model.bin Update pytorch_model.bin 2020-07-20 14:17:19 +00:00
special_tokens_map.json Update special_tokens_map.json 2020-07-20 14:13:30 +00:00
tokenizer_config.json Update tokenizer_config.json 2020-07-20 14:17:16 +00:00
training_args.bin Update training_args.bin 2020-07-20 14:17:15 +00:00
vocab.txt Update vocab.txt 2020-07-20 14:13:33 +00:00

README.md

datasets
squad_v2

MiniLM-L12-H384-uncased for QA

Overview

Language model: microsoft/MiniLM-L12-H384-uncased Language: English Downstream-task: Extractive QA Training data: SQuAD 2.0 Eval data: SQuAD 2.0 Code: See example in FARM Infrastructure: 1x Tesla v100

Hyperparameters

seed=42
batch_size = 12
n_epochs = 4
base_LM_model = "microsoft/MiniLM-L12-H384-uncased"
max_seq_len = 384
learning_rate = 4e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
grad_acc_steps=4

Performance

Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 76.13071675229513,
"f1": 79.49786500219953,
"total": 11873,
"HasAns_exact": 78.35695006747639,
"HasAns_f1": 85.10090269418276,
"HasAns_total": 5928,
"NoAns_exact": 73.91084945332211,
"NoAns_f1": 73.91084945332211,
"NoAns_total": 5945

Usage

In Transformers

from transformers import AutoModelForQuestionAnswering,  AutoTokenizer, pipeline

model_name = "deepset/minilm-uncased-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

In FARM

from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer

model_name = "deepset/minilm-uncased-squad2"

# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
             "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input)

# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)

In haystack

For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:

reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
# or
reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")

Authors

Vaishali Pal vaishali.pal [at] deepset.ai Branden Chan: branden.chan [at] deepset.ai Timo Möller: timo.moeller [at] deepset.ai Malte Pietsch: malte.pietsch [at] deepset.ai Tanay Soni: tanay.soni [at] deepset.ai

About us

deepset logo

We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems.

Some of our work:

Get in touch: Twitter | LinkedIn | Website