From fc2657c72c311728997848d732c30c143b0c54a9 Mon Sep 17 00:00:00 2001 From: Julien Chaumond Date: Fri, 11 Dec 2020 22:38:04 +0100 Subject: [PATCH] Migrate model card from transformers-repo Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755 Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/deepset/minilm-uncased-squad2/README.md --- README.md | 116 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 116 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..4c6604f --- /dev/null +++ b/README.md @@ -0,0 +1,116 @@ +--- +datasets: +- squad_v2 +--- + +# MiniLM-L12-H384-uncased for QA + +## Overview +**Language model:** microsoft/MiniLM-L12-H384-uncased +**Language:** English +**Downstream-task:** Extractive QA +**Training data:** SQuAD 2.0 +**Eval data:** SQuAD 2.0 +**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) +**Infrastructure**: 1x Tesla v100 + +## Hyperparameters + +``` +seed=42 +batch_size = 12 +n_epochs = 4 +base_LM_model = "microsoft/MiniLM-L12-H384-uncased" +max_seq_len = 384 +learning_rate = 4e-5 +lr_schedule = LinearWarmup +warmup_proportion = 0.2 +doc_stride=128 +max_query_length=64 +grad_acc_steps=4 +``` + +## Performance +Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). +``` +"exact": 76.13071675229513, +"f1": 79.49786500219953, +"total": 11873, +"HasAns_exact": 78.35695006747639, +"HasAns_f1": 85.10090269418276, +"HasAns_total": 5928, +"NoAns_exact": 73.91084945332211, +"NoAns_f1": 73.91084945332211, +"NoAns_total": 5945 +``` + +## Usage + +### In Transformers +```python +from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline + +model_name = "deepset/minilm-uncased-squad2" + +# a) Get predictions +nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) +QA_input = { + 'question': 'Why is model conversion important?', + 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' +} +res = nlp(QA_input) + +# b) Load model & tokenizer +model = AutoModelForQuestionAnswering.from_pretrained(model_name) +tokenizer = AutoTokenizer.from_pretrained(model_name) +``` + +### In FARM + +```python +from farm.modeling.adaptive_model import AdaptiveModel +from farm.modeling.tokenization import Tokenizer +from farm.infer import Inferencer + +model_name = "deepset/minilm-uncased-squad2" + +# a) Get predictions +nlp = Inferencer.load(model_name, task_type="question_answering") +QA_input = [{"questions": ["Why is model conversion important?"], + "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] +res = nlp.inference_from_dicts(dicts=QA_input) + +# b) Load model & tokenizer +model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") +tokenizer = Tokenizer.load(model_name) +``` + +### In haystack +For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): +```python +reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2") +# or +reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2") +``` + + +## Authors +Vaishali Pal `vaishali.pal [at] deepset.ai` +Branden Chan: `branden.chan [at] deepset.ai` +Timo Möller: `timo.moeller [at] deepset.ai` +Malte Pietsch: `malte.pietsch [at] deepset.ai` +Tanay Soni: `tanay.soni [at] deepset.ai` + +## About us +![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png) + +We bring NLP to the industry via open source! +Our focus: Industry specific language models & large scale QA systems. + +Some of our work: +- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) +- [FARM](https://github.com/deepset-ai/FARM) +- [Haystack](https://github.com/deepset-ai/haystack/) + +Get in touch: +[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)