2020-12-11 21:38:04 +00:00
---
2022-07-25 07:31:36 +00:00
language: en
2022-12-05 16:07:19 +00:00
license: cc-by-4.0
2020-12-11 21:38:04 +00:00
datasets:
- squad_v2
2022-07-25 07:17:23 +00:00
model-index:
- name: deepset/minilm-uncased-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
2022-12-05 16:07:19 +00:00
- type: exact_match
2022-07-25 07:17:23 +00:00
value: 76.1921
2022-12-05 16:07:19 +00:00
name: Exact Match
2022-07-25 07:17:23 +00:00
verified: true
2022-12-05 16:07:19 +00:00
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmViZTQ3YTBjYTc3ZDQzYmI1Mzk3MTAxM2MzNjdmMTc0MWY4Yzg2MWU3NGQ1MDJhZWI2NzY0YWYxZTY2OTgzMiIsInZlcnNpb24iOjF9.s4XCRs_pvW__LJ57dpXAEHD6NRsQ3XaFrM1xaguS6oUs5fCN77wNNc97scnfoPXT18A8RAn0cLTNivfxZm0oBA
- type: f1
2022-07-25 07:17:23 +00:00
value: 79.5483
2022-12-05 16:07:19 +00:00
name: F1
2022-07-25 07:17:23 +00:00
verified: true
2022-12-05 16:07:19 +00:00
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJlYTIyOTg2NjMyMzg4NzNlNGIzMTY2NDVkMjg0ODdiOWRmYjVkZDYyZjBjNWNiNTBhNjcwOWUzMDM4ZWJiZiIsInZlcnNpb24iOjF9.gxpwIBBA3_5xPi-TaZcqWNnGgCiHzxaUNgrS2jucxoVWGxhBtnPdwKVCxLleQoDDZenAXB3Yh71zMP3xTSeHCw
2020-12-11 21:38:04 +00:00
---
# MiniLM-L12-H384-uncased for QA
## Overview
2022-07-25 07:30:34 +00:00
**Language model:** microsoft/MiniLM-L12-H384-uncased
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [example ](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py ) in [FARM ](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py )
**Infrastructure**: 1x Tesla v100
2020-12-11 21:38:04 +00:00
## Hyperparameters
```
seed=42
batch_size = 12
n_epochs = 4
base_LM_model = "microsoft/MiniLM-L12-H384-uncased"
max_seq_len = 384
learning_rate = 4e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
grad_acc_steps=4
```
## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script ](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/ ).
```
"exact": 76.13071675229513,
"f1": 79.49786500219953,
"total": 11873,
"HasAns_exact": 78.35695006747639,
"HasAns_f1": 85.10090269418276,
"HasAns_total": 5928,
"NoAns_exact": 73.91084945332211,
"NoAns_f1": 73.91084945332211,
"NoAns_total": 5945
```
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/minilm-uncased-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
### In FARM
```python
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer
model_name = "deepset/minilm-uncased-squad2"
# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input)
# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
```
### In haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack ](https://github.com/deepset-ai/haystack/ ):
```python
reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
# or
reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")
```
## Authors
2022-07-25 14:34:52 +00:00
**Vaishali Pal:** vaishali.pal@deepset.ai
**Branden Chan:** branden.chan@deepset.ai
**Timo Möller:** timo.moeller@deepset.ai
**Malte Pietsch:** malte.pietsch@deepset.ai
**Tanay Soni:** tanay.soni@deepset.ai
2020-12-11 21:38:04 +00:00
## About us
2021-08-02 14:42:44 +00:00

2020-12-11 21:38:04 +00:00
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
2021-04-30 07:30:26 +00:00
Some of our work:
2020-12-11 21:38:04 +00:00
- [German BERT (aka "bert-base-german-cased") ](https://deepset.ai/german-bert )
2021-04-30 07:30:26 +00:00
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ](https://deepset.ai/germanquad )
2020-12-11 21:38:04 +00:00
- [FARM ](https://github.com/deepset-ai/FARM )
- [Haystack ](https://github.com/deepset-ai/haystack/ )
Get in touch:
2022-08-15 12:58:16 +00:00
[Twitter ](https://twitter.com/deepset_ai ) | [LinkedIn ](https://www.linkedin.com/company/deepset-ai/ ) | [Discord ](https://haystack.deepset.ai/community/join ) | [GitHub Discussions ](https://github.com/deepset-ai/haystack/discussions ) | [Website ](https://deepset.ai )
2021-04-30 07:30:26 +00:00
2021-10-21 12:19:21 +00:00
By the way: [we're hiring! ](http://www.deepset.ai/jobs )