Compare commits
10 Commits
c4e75aa893
...
91eb2951ac
Author | SHA1 | Date |
---|---|---|
|
91eb2951ac | |
|
ebfdac2cd4 | |
|
46f6aefcc3 | |
|
fc342ddb2d | |
|
68c640e57c | |
|
8ebfa4a417 | |
|
bb1f092d0d | |
|
1dbe1ab00e | |
|
230d9a17ae | |
|
0436d24580 |
|
@ -6,3 +6,4 @@
|
||||||
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
||||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||||
|
|
|
@ -0,0 +1,97 @@
|
||||||
|
---
|
||||||
|
language: en
|
||||||
|
license: cc-by-4.0
|
||||||
|
datasets:
|
||||||
|
- squad_v2
|
||||||
|
model-index:
|
||||||
|
- name: deepset/bert-large-uncased-whole-word-masking-squad2
|
||||||
|
results:
|
||||||
|
- task:
|
||||||
|
type: question-answering
|
||||||
|
name: Question Answering
|
||||||
|
dataset:
|
||||||
|
name: squad_v2
|
||||||
|
type: squad_v2
|
||||||
|
config: squad_v2
|
||||||
|
split: validation
|
||||||
|
metrics:
|
||||||
|
- type: exact_match
|
||||||
|
value: 80.8846
|
||||||
|
name: Exact Match
|
||||||
|
verified: true
|
||||||
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E5ZGNkY2ExZWViZGEwNWE3OGRmMWM2ZmE4ZDU4ZDQ1OGM3ZWE0NTVmZjFmYmZjZmJmNjJmYTc3NTM3OTk3OSIsInZlcnNpb24iOjF9.aSblF4ywh1fnHHrN6UGL392R5KLaH3FCKQlpiXo_EdQ4XXEAENUCjYm9HWDiFsgfSENL35GkbSyz_GAhnefsAQ
|
||||||
|
- type: f1
|
||||||
|
value: 83.8765
|
||||||
|
name: F1
|
||||||
|
verified: true
|
||||||
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFlNmEzMTk2NjRkNTI3ZTk3ZTU1NWNlYzIyN2E0ZDFlNDA2ZjYwZWJlNThkMmRmMmE0YzcwYjIyZDM5NmRiMCIsInZlcnNpb24iOjF9.-rc2_Bsp_B26-o12MFYuAU0Ad2Hg9PDx7Preuk27WlhYJDeKeEr32CW8LLANQABR3Mhw2x8uTYkEUrSDMxxLBw
|
||||||
|
---
|
||||||
|
|
||||||
|
# bert-large-uncased-whole-word-masking-squad2
|
||||||
|
|
||||||
|
This is a berta-large model, fine-tuned using the SQuAD2.0 dataset for the task of question answering.
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
**Language model:** bert-large
|
||||||
|
**Language:** English
|
||||||
|
**Downstream-task:** Extractive QA
|
||||||
|
**Training data:** SQuAD 2.0
|
||||||
|
**Eval data:** SQuAD 2.0
|
||||||
|
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
### In Haystack
|
||||||
|
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
|
||||||
|
```python
|
||||||
|
reader = FARMReader(model_name_or_path="deepset/bert-large-uncased-whole-word-masking-squad2")
|
||||||
|
# or
|
||||||
|
reader = TransformersReader(model_name_or_path="FILL",tokenizer="deepset/bert-large-uncased-whole-word-masking-squad2")
|
||||||
|
```
|
||||||
|
|
||||||
|
### In Transformers
|
||||||
|
```python
|
||||||
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
||||||
|
|
||||||
|
model_name = "deepset/bert-large-uncased-whole-word-masking-squad2"
|
||||||
|
|
||||||
|
# a) Get predictions
|
||||||
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
||||||
|
QA_input = {
|
||||||
|
'question': 'Why is model conversion important?',
|
||||||
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
||||||
|
}
|
||||||
|
res = nlp(QA_input)
|
||||||
|
|
||||||
|
# b) Load model & tokenizer
|
||||||
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
```
|
||||||
|
|
||||||
|
## About us
|
||||||
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
||||||
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
||||||
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
||||||
|
</div>
|
||||||
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
||||||
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
|
||||||
|
|
||||||
|
|
||||||
|
Some of our other work:
|
||||||
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
|
||||||
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||||
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
||||||
|
|
||||||
|
## Get in touch and join the Haystack community
|
||||||
|
|
||||||
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
||||||
|
|
||||||
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
||||||
|
|
||||||
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
||||||
|
|
||||||
|
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
24
config.json
24
config.json
|
@ -3,45 +3,21 @@
|
||||||
"BertForQuestionAnswering"
|
"BertForQuestionAnswering"
|
||||||
],
|
],
|
||||||
"attention_probs_dropout_prob": 0.1,
|
"attention_probs_dropout_prob": 0.1,
|
||||||
"do_sample": false,
|
|
||||||
"finetuning_task": "squad2",
|
"finetuning_task": "squad2",
|
||||||
"hidden_act": "gelu",
|
"hidden_act": "gelu",
|
||||||
"hidden_dropout_prob": 0.1,
|
"hidden_dropout_prob": 0.1,
|
||||||
"hidden_size": 1024,
|
"hidden_size": 1024,
|
||||||
"id2label": {
|
|
||||||
"0": "LABEL_0",
|
|
||||||
"1": "LABEL_1"
|
|
||||||
},
|
|
||||||
"initializer_range": 0.02,
|
"initializer_range": 0.02,
|
||||||
"intermediate_size": 4096,
|
"intermediate_size": 4096,
|
||||||
"is_decoder": false,
|
|
||||||
"label2id": {
|
|
||||||
"LABEL_0": 0,
|
|
||||||
"LABEL_1": 1
|
|
||||||
},
|
|
||||||
"language": "english",
|
"language": "english",
|
||||||
"layer_norm_eps": 1e-12,
|
"layer_norm_eps": 1e-12,
|
||||||
"length_penalty": 1.0,
|
|
||||||
"max_length": 20,
|
|
||||||
"max_position_embeddings": 512,
|
"max_position_embeddings": 512,
|
||||||
"model_type": "bert",
|
"model_type": "bert",
|
||||||
"name": "Bert",
|
"name": "Bert",
|
||||||
"num_attention_heads": 16,
|
"num_attention_heads": 16,
|
||||||
"num_beams": 1,
|
|
||||||
"num_hidden_layers": 24,
|
"num_hidden_layers": 24,
|
||||||
"num_labels": 2,
|
|
||||||
"num_return_sequences": 1,
|
|
||||||
"output_attentions": false,
|
|
||||||
"output_hidden_states": false,
|
|
||||||
"output_past": true,
|
"output_past": true,
|
||||||
"pad_token_id": 0,
|
"pad_token_id": 0,
|
||||||
"pruned_heads": {},
|
|
||||||
"repetition_penalty": 1.0,
|
|
||||||
"temperature": 1.0,
|
|
||||||
"top_k": 50,
|
|
||||||
"top_p": 1.0,
|
|
||||||
"torchscript": false,
|
|
||||||
"type_vocab_size": 2,
|
"type_vocab_size": 2,
|
||||||
"use_bfloat16": false,
|
|
||||||
"vocab_size": 30522
|
"vocab_size": 30522
|
||||||
}
|
}
|
Binary file not shown.
|
@ -1,11 +0,0 @@
|
||||||
{
|
|
||||||
"caveats_and_recommendations": {},
|
|
||||||
"ethical_considerations": {},
|
|
||||||
"evaluation_data": {},
|
|
||||||
"factors": {},
|
|
||||||
"intended_use": {},
|
|
||||||
"metrics": {},
|
|
||||||
"model_details": {},
|
|
||||||
"quantitative_analyses": {},
|
|
||||||
"training_data": {}
|
|
||||||
}
|
|
Loading…
Reference in New Issue