2021-01-27 16:31:21 +00:00
---
2022-07-25 07:35:23 +00:00
language: en
2022-12-05 16:06:07 +00:00
license: cc-by-4.0
2022-07-25 07:35:23 +00:00
datasets:
- squad_v2
2022-07-25 12:20:44 +00:00
model-index:
- name: deepset/bert-large-uncased-whole-word-masking-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
2022-12-05 16:06:07 +00:00
- type: exact_match
2022-07-25 12:20:44 +00:00
value: 80.8846
2022-12-05 16:06:07 +00:00
name: Exact Match
2022-07-25 12:20:44 +00:00
verified: true
2022-12-05 16:06:07 +00:00
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E5ZGNkY2ExZWViZGEwNWE3OGRmMWM2ZmE4ZDU4ZDQ1OGM3ZWE0NTVmZjFmYmZjZmJmNjJmYTc3NTM3OTk3OSIsInZlcnNpb24iOjF9.aSblF4ywh1fnHHrN6UGL392R5KLaH3FCKQlpiXo_EdQ4XXEAENUCjYm9HWDiFsgfSENL35GkbSyz_GAhnefsAQ
- type: f1
2022-07-25 12:20:44 +00:00
value: 83.8765
2022-12-05 16:06:07 +00:00
name: F1
2022-07-25 12:20:44 +00:00
verified: true
2022-12-05 16:06:07 +00:00
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFlNmEzMTk2NjRkNTI3ZTk3ZTU1NWNlYzIyN2E0ZDFlNDA2ZjYwZWJlNThkMmRmMmE0YzcwYjIyZDM5NmRiMCIsInZlcnNpb24iOjF9.-rc2_Bsp_B26-o12MFYuAU0Ad2Hg9PDx7Preuk27WlhYJDeKeEr32CW8LLANQABR3Mhw2x8uTYkEUrSDMxxLBw
2021-01-27 16:31:21 +00:00
---
2022-11-18 17:05:25 +00:00
# bert-large-uncased-whole-word-masking-squad2
This is a berta-large model, fine-tuned using the SQuAD2.0 dataset for the task of question answering.
2022-11-18 17:05:48 +00:00
## Overview
2022-11-18 17:05:25 +00:00
**Language model:** bert-large
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [an example QA pipeline on Haystack ](https://haystack.deepset.ai/tutorials/first-qa-system )
## Usage
### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack ](https://github.com/deepset-ai/haystack/ ):
```python
reader = FARMReader(model_name_or_path="deepset/bert-large-uncased-whole-word-masking-squad2")
# or
reader = TransformersReader(model_name_or_path="FILL",tokenizer="deepset/bert-large-uncased-whole-word-masking-squad2")
```
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/bert-large-uncased-whole-word-masking-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## About us
< div class = "grid lg:grid-cols-2 gap-x-4 gap-y-3" >
< div class = "w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center" >
< img alt = "" src = "https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class = "w-40" / >
< / div >
< div class = "w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center" >
< img alt = "" src = "https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class = "w-40" / >
< / div >
< / div >
[deepset ](http://deepset.ai/ ) is the company behind the open-source NLP framework [Haystack ](https://haystack.deepset.ai/ ) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2") ]([https://huggingface.co/deepset/tinyroberta-squad2 )
- [German BERT (aka "bert-base-german-cased") ](https://deepset.ai/german-bert )
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ](https://deepset.ai/germanquad )
## Get in touch and join the Haystack community
< p > For more info on Haystack, visit our < strong > < a href = "https://github.com/deepset-ai/haystack" > GitHub< / a > < / strong > repo and < strong > < a href = "https://docs.haystack.deepset.ai" > Documentation< / a > < / strong > .
We also have a < strong > < a class = "h-7" href = "https://haystack.deepset.ai/community" > Discord community open to everyone!< / a > < / strong > < / p >
[Twitter ](https://twitter.com/deepset_ai ) | [LinkedIn ](https://www.linkedin.com/company/deepset-ai/ ) | [Discord ](https://haystack.deepset.ai/community/join ) | [GitHub Discussions ](https://github.com/deepset-ai/haystack/discussions ) | [Website ](https://deepset.ai )
By the way: [we're hiring! ](http://www.deepset.ai/jobs )