Compare commits
10 Commits
a623ed9fe1
...
1c9dadfb1d
Author | SHA1 | Date |
---|---|---|
|
1c9dadfb1d | |
|
b2b5013007 | |
|
ced69de5b6 | |
|
23111f3256 | |
|
645f80079e | |
|
428b7726c5 | |
|
041642eb36 | |
|
1a7d51c9f1 | |
|
2b4fd646c4 | |
|
ee08f3bd7b |
|
@ -1,16 +1,31 @@
|
||||||
# Cross-Encoder for Quora Duplicate Questions Detection
|
---
|
||||||
|
language: en
|
||||||
|
pipeline_tag: zero-shot-classification
|
||||||
|
tags:
|
||||||
|
- roberta-base
|
||||||
|
datasets:
|
||||||
|
- multi_nli
|
||||||
|
- snli
|
||||||
|
metrics:
|
||||||
|
- accuracy
|
||||||
|
license: apache-2.0
|
||||||
|
---
|
||||||
|
|
||||||
|
# Cross-Encoder for Natural Language Inference
|
||||||
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
||||||
|
|
||||||
## Training Data
|
## Training Data
|
||||||
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
||||||
|
|
||||||
|
## Performance
|
||||||
|
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
Pre-trained models can be used like this:
|
Pre-trained models can be used like this:
|
||||||
```python
|
```python
|
||||||
from sentence_transformers import CrossEncoder
|
from sentence_transformers import CrossEncoder
|
||||||
model = CrossEncoder('model_name')
|
model = CrossEncoder('cross-encoder/nli-roberta-base')
|
||||||
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
||||||
|
|
||||||
#Convert scores to labels
|
#Convert scores to labels
|
||||||
|
@ -24,8 +39,8 @@ You can use the model also directly with Transformers library (without SentenceT
|
||||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-roberta-base')
|
||||||
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-roberta-base')
|
||||||
|
|
||||||
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
||||||
|
|
||||||
|
@ -36,3 +51,16 @@ with torch.no_grad():
|
||||||
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
||||||
print(labels)
|
print(labels)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Zero-Shot Classification
|
||||||
|
This model can also be used for zero-shot-classification:
|
||||||
|
```python
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-roberta-base')
|
||||||
|
|
||||||
|
sent = "Apple just announced the newest iPhone X"
|
||||||
|
candidate_labels = ["technology", "sports", "politics"]
|
||||||
|
res = classifier(sent, candidate_labels)
|
||||||
|
print(res)
|
||||||
|
```
|
Binary file not shown.
Loading…
Reference in New Issue