Compare commits
10 Commits
a623ed9fe1
...
1c9dadfb1d
Author | SHA1 | Date |
---|---|---|
|
1c9dadfb1d | |
|
b2b5013007 | |
|
ced69de5b6 | |
|
23111f3256 | |
|
645f80079e | |
|
428b7726c5 | |
|
041642eb36 | |
|
1a7d51c9f1 | |
|
2b4fd646c4 | |
|
ee08f3bd7b |
|
@ -1,16 +1,31 @@
|
|||
# Cross-Encoder for Quora Duplicate Questions Detection
|
||||
---
|
||||
language: en
|
||||
pipeline_tag: zero-shot-classification
|
||||
tags:
|
||||
- roberta-base
|
||||
datasets:
|
||||
- multi_nli
|
||||
- snli
|
||||
metrics:
|
||||
- accuracy
|
||||
license: apache-2.0
|
||||
---
|
||||
|
||||
# Cross-Encoder for Natural Language Inference
|
||||
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
||||
|
||||
## Training Data
|
||||
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
||||
|
||||
## Performance
|
||||
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
|
||||
|
||||
## Usage
|
||||
|
||||
Pre-trained models can be used like this:
|
||||
```python
|
||||
from sentence_transformers import CrossEncoder
|
||||
model = CrossEncoder('model_name')
|
||||
model = CrossEncoder('cross-encoder/nli-roberta-base')
|
||||
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
||||
|
||||
#Convert scores to labels
|
||||
|
@ -24,8 +39,8 @@ You can use the model also directly with Transformers library (without SentenceT
|
|||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
import torch
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
||||
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
||||
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-roberta-base')
|
||||
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-roberta-base')
|
||||
|
||||
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
||||
|
||||
|
@ -35,4 +50,17 @@ with torch.no_grad():
|
|||
label_mapping = ['contradiction', 'entailment', 'neutral']
|
||||
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
||||
print(labels)
|
||||
```
|
||||
```
|
||||
|
||||
## Zero-Shot Classification
|
||||
This model can also be used for zero-shot-classification:
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-roberta-base')
|
||||
|
||||
sent = "Apple just announced the newest iPhone X"
|
||||
candidate_labels = ["technology", "sports", "politics"]
|
||||
res = classifier(sent, candidate_labels)
|
||||
print(res)
|
||||
```
|
Binary file not shown.
Loading…
Reference in New Issue