Compare commits
No commits in common. "1c9dadfb1d7bcaac49176fd3a5de914f6ae2bd42" and "a623ed9fe12c96dc6c234bff104d1d6d5b84ea1f" have entirely different histories.
1c9dadfb1d
...
a623ed9fe1
|
@ -1,31 +1,16 @@
|
||||||
---
|
# Cross-Encoder for Quora Duplicate Questions Detection
|
||||||
language: en
|
|
||||||
pipeline_tag: zero-shot-classification
|
|
||||||
tags:
|
|
||||||
- roberta-base
|
|
||||||
datasets:
|
|
||||||
- multi_nli
|
|
||||||
- snli
|
|
||||||
metrics:
|
|
||||||
- accuracy
|
|
||||||
license: apache-2.0
|
|
||||||
---
|
|
||||||
|
|
||||||
# Cross-Encoder for Natural Language Inference
|
|
||||||
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
||||||
|
|
||||||
## Training Data
|
## Training Data
|
||||||
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
||||||
|
|
||||||
## Performance
|
|
||||||
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
|
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
Pre-trained models can be used like this:
|
Pre-trained models can be used like this:
|
||||||
```python
|
```python
|
||||||
from sentence_transformers import CrossEncoder
|
from sentence_transformers import CrossEncoder
|
||||||
model = CrossEncoder('cross-encoder/nli-roberta-base')
|
model = CrossEncoder('model_name')
|
||||||
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
||||||
|
|
||||||
#Convert scores to labels
|
#Convert scores to labels
|
||||||
|
@ -39,8 +24,8 @@ You can use the model also directly with Transformers library (without SentenceT
|
||||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-roberta-base')
|
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
||||||
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-roberta-base')
|
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
||||||
|
|
||||||
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
||||||
|
|
||||||
|
@ -50,17 +35,4 @@ with torch.no_grad():
|
||||||
label_mapping = ['contradiction', 'entailment', 'neutral']
|
label_mapping = ['contradiction', 'entailment', 'neutral']
|
||||||
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
||||||
print(labels)
|
print(labels)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Zero-Shot Classification
|
|
||||||
This model can also be used for zero-shot-classification:
|
|
||||||
```python
|
|
||||||
from transformers import pipeline
|
|
||||||
|
|
||||||
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-roberta-base')
|
|
||||||
|
|
||||||
sent = "Apple just announced the newest iPhone X"
|
|
||||||
candidate_labels = ["technology", "sports", "politics"]
|
|
||||||
res = classifier(sent, candidate_labels)
|
|
||||||
print(res)
|
|
||||||
```
|
|
BIN
flax_model.msgpack (Stored with Git LFS)
BIN
flax_model.msgpack (Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue