Compare commits

..

No commits in common. "1c9dadfb1d7bcaac49176fd3a5de914f6ae2bd42" and "a623ed9fe12c96dc6c234bff104d1d6d5b84ea1f" have entirely different histories.

2 changed files with 5 additions and 36 deletions

38
README.md Normal file → Executable file
View File

@ -1,31 +1,16 @@
---
language: en
pipeline_tag: zero-shot-classification
tags:
- roberta-base
datasets:
- multi_nli
- snli
metrics:
- accuracy
license: apache-2.0
---
# Cross-Encoder for Natural Language Inference
# Cross-Encoder for Quora Duplicate Questions Detection
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
## Performance
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
## Usage
Pre-trained models can be used like this:
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/nli-roberta-base')
model = CrossEncoder('model_name')
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
#Convert scores to labels
@ -39,8 +24,8 @@ You can use the model also directly with Transformers library (without SentenceT
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-roberta-base')
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-roberta-base')
model = AutoModelForSequenceClassification.from_pretrained('model_name')
tokenizer = AutoTokenizer.from_pretrained('model_name')
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
@ -50,17 +35,4 @@ with torch.no_grad():
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
print(labels)
```
## Zero-Shot Classification
This model can also be used for zero-shot-classification:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-roberta-base')
sent = "Apple just announced the newest iPhone X"
candidate_labels = ["technology", "sports", "politics"]
res = classifier(sent, candidate_labels)
print(res)
```
```

BIN
flax_model.msgpack (Stored with Git LFS)

Binary file not shown.