From b2b5013007aed47876f95f347819d284867f4ec9 Mon Sep 17 00:00:00 2001 From: nreimers Date: Mon, 21 Jun 2021 11:42:20 +0200 Subject: [PATCH] up --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 72776c6..a65f11f 100755 --- a/README.md +++ b/README.md @@ -24,7 +24,7 @@ For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.s Pre-trained models can be used like this: ```python from sentence_transformers import CrossEncoder -model = CrossEncoder('model_name') +model = CrossEncoder('cross-encoder/nli-roberta-base') scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')]) #Convert scores to labels @@ -38,8 +38,8 @@ You can use the model also directly with Transformers library (without SentenceT from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch -model = AutoModelForSequenceClassification.from_pretrained('model_name') -tokenizer = AutoTokenizer.from_pretrained('model_name') +model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-roberta-base') +tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-roberta-base') features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt") @@ -53,7 +53,7 @@ with torch.no_grad(): ## Zero-Shot Classification This model can also be used for zero-shot-classification: -``` +```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-roberta-base')