This commit is contained in:
parent
cb68b8c714
commit
3616151782
|
@ -0,0 +1,13 @@
|
|||
epoch,steps,Accuracy
|
||||
0,10000,0.8128608857121055
|
||||
0,20000,0.8258336936891105
|
||||
0,30000,0.8371785414493933
|
||||
0,40000,0.849668048737059
|
||||
0,50000,0.8555439676442906
|
||||
0,-1,0.854857171927861
|
||||
1,10000,0.8612418284028184
|
||||
1,20000,0.8619540609976344
|
||||
1,30000,0.8658459033907359
|
||||
1,40000,0.8682115330806603
|
||||
1,50000,0.8688474550403175
|
||||
1,-1,0.8696614351486786
|
|
|
@ -0,0 +1,38 @@
|
|||
# Cross-Encoder for Quora Duplicate Questions Detection
|
||||
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
||||
|
||||
## Training Data
|
||||
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
Pre-trained models can be used like this:
|
||||
```python
|
||||
from sentence_transformers import CrossEncoder
|
||||
model = CrossEncoder('model_name')
|
||||
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
||||
|
||||
#Convert scores to labels
|
||||
label_mapping = ['contradiction', 'entailment', 'neutral']
|
||||
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
|
||||
```
|
||||
|
||||
## Usage with Transformers AutoModel
|
||||
You can use the model also directly with Transformers library (without SentenceTransformers library):
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
import torch
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
||||
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
||||
|
||||
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
scores = model(**features).logits
|
||||
label_mapping = ['contradiction', 'entailment', 'neutral']
|
||||
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
||||
print(labels)
|
||||
```
|
|
@ -0,0 +1,32 @@
|
|||
{
|
||||
"architectures": [
|
||||
"RobertaForSequenceClassification"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": 2,
|
||||
"gradient_checkpointing": false,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"id2label": {
|
||||
"0": "contradiction",
|
||||
"1": "entailment",
|
||||
"2": "neutral"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"label2id": {
|
||||
"contradiction": 0,
|
||||
"entailment": 1,
|
||||
"neutral": 2
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 514,
|
||||
"model_type": "roberta",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 6,
|
||||
"pad_token_id": 1,
|
||||
"type_vocab_size": 1,
|
||||
"vocab_size": 50265
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
|
@ -0,0 +1 @@
|
|||
{"model_max_length": 512}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue