upload
This commit is contained in:
parent
6efbd6a2c2
commit
5ada1949e1
|
@ -0,0 +1,61 @@
|
||||||
|
# Cross-Encoder for MS Marco
|
||||||
|
|
||||||
|
This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
|
||||||
|
|
||||||
|
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
|
||||||
|
|
||||||
|
|
||||||
|
## Usage with Transformers
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||||
|
import torch
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
||||||
|
|
||||||
|
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
scores = model(**features).logits
|
||||||
|
print(scores)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Usage with SentenceTransformers
|
||||||
|
|
||||||
|
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
||||||
|
```python
|
||||||
|
from sentence_transformers import CrossEncoder
|
||||||
|
model = CrossEncoder('model_name', max_length=512)
|
||||||
|
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Performance
|
||||||
|
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
||||||
|
|
||||||
|
|
||||||
|
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
||||||
|
| ------------- |:-------------| -----| --- |
|
||||||
|
| **Version 2 models** | | |
|
||||||
|
| cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000
|
||||||
|
| cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100
|
||||||
|
| cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500
|
||||||
|
| cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800
|
||||||
|
| cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960
|
||||||
|
| **Version 1 models** | | |
|
||||||
|
| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000
|
||||||
|
| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900
|
||||||
|
| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680
|
||||||
|
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
||||||
|
| **Other models** | | |
|
||||||
|
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|
||||||
|
| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
|
||||||
|
| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
|
||||||
|
| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
|
||||||
|
| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
|
||||||
|
| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
|
||||||
|
|
||||||
|
Note: Runtime was computed on a V100 GPU.
|
|
@ -0,0 +1,31 @@
|
||||||
|
{
|
||||||
|
"_name_or_path": "cross-encoder/ms-marco-MiniLM-L-12-v2",
|
||||||
|
"architectures": [
|
||||||
|
"BertForSequenceClassification"
|
||||||
|
],
|
||||||
|
"attention_probs_dropout_prob": 0.1,
|
||||||
|
"gradient_checkpointing": false,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_dropout_prob": 0.1,
|
||||||
|
"hidden_size": 384,
|
||||||
|
"id2label": {
|
||||||
|
"0": "LABEL_0"
|
||||||
|
},
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 1536,
|
||||||
|
"label2id": {
|
||||||
|
"LABEL_0": 0
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-12,
|
||||||
|
"max_position_embeddings": 512,
|
||||||
|
"model_type": "bert",
|
||||||
|
"num_attention_heads": 12,
|
||||||
|
"num_hidden_layers": 6,
|
||||||
|
"pad_token_id": 0,
|
||||||
|
"position_embedding_type": "absolute",
|
||||||
|
"transformers_version": "4.4.2",
|
||||||
|
"type_vocab_size": 2,
|
||||||
|
"use_cache": true,
|
||||||
|
"vocab_size": 30522,
|
||||||
|
"sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity"
|
||||||
|
}
|
Binary file not shown.
|
@ -0,0 +1 @@
|
||||||
|
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
|
@ -0,0 +1 @@
|
||||||
|
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/1e5909e4dfaa904617797ed35a6105a23daa56cbefca48fef329f772584699fb.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "../output-cat/microsoft_MiniLM-L12-H384-uncased-2021-04-03_22-57-29", "do_basic_tokenize": true, "never_split": null}
|
Loading…
Reference in New Issue