Compare commits

..

No commits in common. "d38ef7b8626347c12363d3058a8db28fe6dbcdb4" and "856553beaaaf559c029023df1e1af05a35723b77" have entirely different histories.

2 changed files with 14 additions and 15 deletions

View File

@ -1,23 +1,21 @@
--- ---
language: multilingual language: multilingual
widget: widget:
- text: "🤗" - text: "T'estimo!"
- text: "T'estimo! ❤️"
- text: "I love you!" - text: "I love you!"
- text: "I hate you 🤮" - text: "I hate you"
- text: "Mahal kita!" - text: "Mahal kita!"
- text: "사랑해!" - text: "사랑해!"
- text: "난 너가 싫어" - text: "난 너가 싫어"
- text: "😍😍😍"
--- ---
# twitter-XLM-roBERTa-base for Sentiment Analysis # twitter-XLM-roBERTa-base for Sentiment Analysis
This is a multilingual XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages (see paper for details). This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis in
- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://arxiv.org/abs/2104.12250). - Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://...).
- Git Repo: [XLM-T official repository](https://github.com/cardiffnlp/xlm-t). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/xlm-t).
## Example Pipeline ## Example Pipeline
```python ```python
@ -26,8 +24,9 @@ model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("T'estimo!") sentiment_task("T'estimo!")
``` ```
Output:
``` ```
[{'label': 'Positive', 'score': 0.6600581407546997}] [{'label': 'LABEL_2', 'score': 0.6600581407546997}]
``` ```
## Full classification example ## Full classification example
@ -35,7 +34,7 @@ sentiment_task("T'estimo!")
```python ```python
from transformers import AutoModelForSequenceClassification from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig from transformers import AutoTokenizer
import numpy as np import numpy as np
from scipy.special import softmax from scipy.special import softmax

View File

@ -11,16 +11,16 @@
"hidden_dropout_prob": 0.1, "hidden_dropout_prob": 0.1,
"hidden_size": 768, "hidden_size": 768,
"id2label": { "id2label": {
"0": "negative", "0": "Negative",
"1": "neutral", "1": "Neutral",
"2": "positive" "2": "Positive"
}, },
"initializer_range": 0.02, "initializer_range": 0.02,
"intermediate_size": 3072, "intermediate_size": 3072,
"label2id": { "label2id": {
"negative": 0, "Negative": 0,
"neutral": 1, "Neutral": 1,
"positive": 2 "Positive": 2
}, },
"layer_norm_eps": 1e-05, "layer_norm_eps": 1e-05,
"max_position_embeddings": 514, "max_position_embeddings": 514,