Adding tweeteval classifier
This commit is contained in:
parent
c6eb303fb1
commit
c3f00119f3
|
@ -0,0 +1,70 @@
|
||||||
|
# Twitter-roBERTa-base
|
||||||
|
|
||||||
|
This is a roBERTa-base model trained on ~58M tweets and finetuned for the Sentiment Analysis task at Semeval 2018.
|
||||||
|
For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
||||||
|
To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
||||||
|
|
||||||
|
## Example of classification
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from transformers import TFAutoModelForSequenceClassification
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import numpy as np
|
||||||
|
from scipy.special import softmax
|
||||||
|
import csv
|
||||||
|
import urllib.request
|
||||||
|
|
||||||
|
# Tasks:
|
||||||
|
# emoji, emotion, hate, irony, offensive, sentiment
|
||||||
|
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary
|
||||||
|
|
||||||
|
task='sentiment'
|
||||||
|
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||||
|
|
||||||
|
# download label mapping
|
||||||
|
labels=[]
|
||||||
|
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
|
||||||
|
with urllib.request.urlopen(mapping_link) as f:
|
||||||
|
html = f.read().decode('utf-8').split("\n")
|
||||||
|
spamreader = csv.reader(html[:-1], delimiter='\t')
|
||||||
|
labels = [row[1] for row in spamreader]
|
||||||
|
|
||||||
|
# PT
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
|
model.save_pretrained(MODEL)
|
||||||
|
|
||||||
|
text = "Good night 😊"
|
||||||
|
encoded_input = tokenizer(text, return_tensors='pt')
|
||||||
|
output = model(**encoded_input)
|
||||||
|
scores = output[0][0].detach().numpy()
|
||||||
|
scores = softmax(scores)
|
||||||
|
|
||||||
|
# # TF
|
||||||
|
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
|
# model.save_pretrained(MODEL)
|
||||||
|
|
||||||
|
# text = "Good night 😊"
|
||||||
|
# encoded_input = tokenizer(text, return_tensors='tf')
|
||||||
|
# output = model(encoded_input)
|
||||||
|
# scores = output[0][0].numpy()
|
||||||
|
# scores = softmax(scores)
|
||||||
|
|
||||||
|
ranking = np.argsort(scores)
|
||||||
|
ranking = ranking[::-1]
|
||||||
|
for i in range(scores.shape[0]):
|
||||||
|
l = labels[ranking[i]]
|
||||||
|
s = scores[ranking[i]]
|
||||||
|
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Output:
|
||||||
|
|
||||||
|
```
|
||||||
|
1) positive 0.8466
|
||||||
|
2) neutral 0.1458
|
||||||
|
3) negative 0.0076
|
||||||
|
```
|
|
@ -0,0 +1,70 @@
|
||||||
|
# Twitter-roBERTa-base
|
||||||
|
|
||||||
|
This is a roBERTa-base model trained on ~58M tweets and finetuned for the Sentiment Analysis task at Semeval 2018.
|
||||||
|
For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
||||||
|
To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
||||||
|
|
||||||
|
## Example of classification
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from transformers import TFAutoModelForSequenceClassification
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import numpy as np
|
||||||
|
from scipy.special import softmax
|
||||||
|
import csv
|
||||||
|
import urllib.request
|
||||||
|
|
||||||
|
# Tasks:
|
||||||
|
# emoji, emotion, hate, irony, offensive, sentiment
|
||||||
|
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary
|
||||||
|
|
||||||
|
task='sentiment'
|
||||||
|
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||||
|
|
||||||
|
# download label mapping
|
||||||
|
labels=[]
|
||||||
|
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
|
||||||
|
with urllib.request.urlopen(mapping_link) as f:
|
||||||
|
html = f.read().decode('utf-8').split("\n")
|
||||||
|
spamreader = csv.reader(html[:-1], delimiter='\t')
|
||||||
|
labels = [row[1] for row in spamreader]
|
||||||
|
|
||||||
|
# PT
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
|
model.save_pretrained(MODEL)
|
||||||
|
|
||||||
|
text = "Good night 😊"
|
||||||
|
encoded_input = tokenizer(text, return_tensors='pt')
|
||||||
|
output = model(**encoded_input)
|
||||||
|
scores = output[0][0].detach().numpy()
|
||||||
|
scores = softmax(scores)
|
||||||
|
|
||||||
|
# # TF
|
||||||
|
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
|
# model.save_pretrained(MODEL)
|
||||||
|
|
||||||
|
# text = "Good night 😊"
|
||||||
|
# encoded_input = tokenizer(text, return_tensors='tf')
|
||||||
|
# output = model(encoded_input)
|
||||||
|
# scores = output[0][0].numpy()
|
||||||
|
# scores = softmax(scores)
|
||||||
|
|
||||||
|
ranking = np.argsort(scores)
|
||||||
|
ranking = ranking[::-1]
|
||||||
|
for i in range(scores.shape[0]):
|
||||||
|
l = labels[ranking[i]]
|
||||||
|
s = scores[ranking[i]]
|
||||||
|
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Output:
|
||||||
|
|
||||||
|
```
|
||||||
|
1) positive 0.8466
|
||||||
|
2) neutral 0.1458
|
||||||
|
3) negative 0.0076
|
||||||
|
```
|
|
@ -0,0 +1,33 @@
|
||||||
|
{
|
||||||
|
"_name_or_path": "tweeteval_new/roberta-base-rt-sentiment/",
|
||||||
|
"architectures": [
|
||||||
|
"RobertaForSequenceClassification"
|
||||||
|
],
|
||||||
|
"attention_probs_dropout_prob": 0.1,
|
||||||
|
"bos_token_id": 0,
|
||||||
|
"eos_token_id": 2,
|
||||||
|
"gradient_checkpointing": false,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_dropout_prob": 0.1,
|
||||||
|
"hidden_size": 768,
|
||||||
|
"id2label": {
|
||||||
|
"0": "LABEL_0",
|
||||||
|
"1": "LABEL_1",
|
||||||
|
"2": "LABEL_2"
|
||||||
|
},
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 3072,
|
||||||
|
"label2id": {
|
||||||
|
"LABEL_0": 0,
|
||||||
|
"LABEL_1": 1,
|
||||||
|
"LABEL_2": 2
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-05,
|
||||||
|
"max_position_embeddings": 514,
|
||||||
|
"model_type": "roberta",
|
||||||
|
"num_attention_heads": 12,
|
||||||
|
"num_hidden_layers": 12,
|
||||||
|
"pad_token_id": 1,
|
||||||
|
"type_vocab_size": 1,
|
||||||
|
"vocab_size": 50265
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1 @@
|
||||||
|
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue