Update README.md
This commit is contained in:
parent
aa7cb4cab2
commit
8eacbc59c0
12
README.md
12
README.md
|
@ -1,4 +1,4 @@
|
||||||
# Twitter-roBERTa-base
|
# Twitter-roBERTa-base for Sentiment Analysis
|
||||||
|
|
||||||
This is a roBERTa-base model trained on ~58M tweets and finetuned for the Sentiment Analysis task at Semeval 2018.
|
This is a roBERTa-base model trained on ~58M tweets and finetuned for the Sentiment Analysis task at Semeval 2018.
|
||||||
For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
||||||
|
@ -6,6 +6,15 @@ To evaluate this and other models on Twitter-specific data, please refer to the
|
||||||
|
|
||||||
## Example of classification
|
## Example of classification
|
||||||
|
|
||||||
|
# Preprocess text (username and link placeholders)
|
||||||
|
def preprocess(text):
|
||||||
|
new_text = []
|
||||||
|
for t in text.split(" "):
|
||||||
|
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
||||||
|
t = 'http' if t.startswith('http') else t
|
||||||
|
new_text.append(t)
|
||||||
|
return " ".join(new_text)
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from transformers import AutoModelForSequenceClassification
|
from transformers import AutoModelForSequenceClassification
|
||||||
from transformers import TFAutoModelForSequenceClassification
|
from transformers import TFAutoModelForSequenceClassification
|
||||||
|
@ -37,6 +46,7 @@ model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
model.save_pretrained(MODEL)
|
model.save_pretrained(MODEL)
|
||||||
|
|
||||||
text = "Good night 😊"
|
text = "Good night 😊"
|
||||||
|
text = preprocess(text)
|
||||||
encoded_input = tokenizer(text, return_tensors='pt')
|
encoded_input = tokenizer(text, return_tensors='pt')
|
||||||
output = model(**encoded_input)
|
output = model(**encoded_input)
|
||||||
scores = output[0][0].detach().numpy()
|
scores = output[0][0].detach().numpy()
|
||||||
|
|
Loading…
Reference in New Issue