Adding tweeteval classifier
This commit is contained in:
parent
27ca1af057
commit
3f3ed66d59
|
@ -0,0 +1,83 @@
|
||||||
|
---
|
||||||
|
language: english
|
||||||
|
widget:
|
||||||
|
- text: "Covid cases are increasing fast!"
|
||||||
|
- text: "🤗"
|
||||||
|
- text: "I hate you 🤮"
|
||||||
|
---
|
||||||
|
|
||||||
|
|
||||||
|
# Twitter-roBERTa-base for Sentiment Analysis
|
||||||
|
|
||||||
|
This is a roBERTa-base model trained on ~200M tweets and finetuned for sentiment analysis with the TweetEval benchmark. This model is suitable for English.
|
||||||
|
|
||||||
|
- Reference Paper: [_TweetEval_ (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
||||||
|
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
||||||
|
|
||||||
|
<b>Labels</b>:
|
||||||
|
0 -> Negative;
|
||||||
|
1 -> Neutral;
|
||||||
|
2 -> Positive
|
||||||
|
|
||||||
|
## Example Pipeline
|
||||||
|
```python
|
||||||
|
from transformers import pipeline
|
||||||
|
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
||||||
|
sentiment_task("Covid cases are increasing fast!")
|
||||||
|
```
|
||||||
|
```
|
||||||
|
[{'label': 'Negative', 'score': 0.7236}]
|
||||||
|
```
|
||||||
|
|
||||||
|
## Full classification example
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from transformers import TFAutoModelForSequenceClassification
|
||||||
|
from transformers import AutoTokenizer, AutoConfig
|
||||||
|
import numpy as np
|
||||||
|
from scipy.special import softmax
|
||||||
|
# Preprocess text (username and link placeholders)
|
||||||
|
def preprocess(text):
|
||||||
|
new_text = []
|
||||||
|
for t in text.split(" "):
|
||||||
|
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
||||||
|
t = 'http' if t.startswith('http') else t
|
||||||
|
new_text.append(t)
|
||||||
|
return " ".join(new_text)
|
||||||
|
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||||
|
config = AutoConfig.from_pretrained(MODEL)
|
||||||
|
# PT
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
|
#model.save_pretrained(MODEL)
|
||||||
|
text = "Covid cases are increasing fast!"
|
||||||
|
text = preprocess(text)
|
||||||
|
encoded_input = tokenizer(text, return_tensors='pt')
|
||||||
|
output = model(**encoded_input)
|
||||||
|
scores = output[0][0].detach().numpy()
|
||||||
|
scores = softmax(scores)
|
||||||
|
# # TF
|
||||||
|
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||||
|
# model.save_pretrained(MODEL)
|
||||||
|
# text = "Covid cases are increasing fast!"
|
||||||
|
# encoded_input = tokenizer(text, return_tensors='tf')
|
||||||
|
# output = model(encoded_input)
|
||||||
|
# scores = output[0][0].numpy()
|
||||||
|
# scores = softmax(scores)
|
||||||
|
# Print labels and scores
|
||||||
|
ranking = np.argsort(scores)
|
||||||
|
ranking = ranking[::-1]
|
||||||
|
for i in range(scores.shape[0]):
|
||||||
|
l = config.id2label[ranking[i]]
|
||||||
|
s = scores[ranking[i]]
|
||||||
|
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
||||||
|
```
|
||||||
|
|
||||||
|
Output:
|
||||||
|
|
||||||
|
```
|
||||||
|
1) Negative 0.7236
|
||||||
|
2) Neutral 0.2287
|
||||||
|
3) Positive 0.0477
|
||||||
|
```
|
|
@ -0,0 +1,37 @@
|
||||||
|
{
|
||||||
|
"_name_or_path": "/home/jupyter/misc/tweeteval/TweetEval_models/sentiment/sentiment_latest_2021/",
|
||||||
|
"architectures": [
|
||||||
|
"RobertaForSequenceClassification"
|
||||||
|
],
|
||||||
|
"attention_probs_dropout_prob": 0.1,
|
||||||
|
"bos_token_id": 0,
|
||||||
|
"classifier_dropout": null,
|
||||||
|
"eos_token_id": 2,
|
||||||
|
"gradient_checkpointing": false,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_dropout_prob": 0.1,
|
||||||
|
"hidden_size": 768,
|
||||||
|
"id2label": {
|
||||||
|
"0": "Negative",
|
||||||
|
"1": "Neutral",
|
||||||
|
"2": "Positive"
|
||||||
|
},
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 3072,
|
||||||
|
"label2id": {
|
||||||
|
"Negative": 0,
|
||||||
|
"Neutral": 1,
|
||||||
|
"Positive": 2
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-05,
|
||||||
|
"max_position_embeddings": 514,
|
||||||
|
"model_type": "roberta",
|
||||||
|
"num_attention_heads": 12,
|
||||||
|
"num_hidden_layers": 12,
|
||||||
|
"pad_token_id": 1,
|
||||||
|
"position_embedding_type": "absolute",
|
||||||
|
"torch_dtype": "float32",
|
||||||
|
"transformers_version": "4.13.0.dev0",
|
||||||
|
"type_vocab_size": 1,
|
||||||
|
"vocab_size": 50265
|
||||||
|
}
|
Binary file not shown.
|
@ -0,0 +1 @@
|
||||||
|
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue