Adding tweeteval classifier
This commit is contained in:
parent
27ca1af057
commit
3f3ed66d59
|
@ -0,0 +1,83 @@
|
|||
---
|
||||
language: english
|
||||
widget:
|
||||
- text: "Covid cases are increasing fast!"
|
||||
- text: "🤗"
|
||||
- text: "I hate you 🤮"
|
||||
---
|
||||
|
||||
|
||||
# Twitter-roBERTa-base for Sentiment Analysis
|
||||
|
||||
This is a roBERTa-base model trained on ~200M tweets and finetuned for sentiment analysis with the TweetEval benchmark. This model is suitable for English.
|
||||
|
||||
- Reference Paper: [_TweetEval_ (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
||||
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
||||
|
||||
<b>Labels</b>:
|
||||
0 -> Negative;
|
||||
1 -> Neutral;
|
||||
2 -> Positive
|
||||
|
||||
## Example Pipeline
|
||||
```python
|
||||
from transformers import pipeline
|
||||
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
||||
sentiment_task("Covid cases are increasing fast!")
|
||||
```
|
||||
```
|
||||
[{'label': 'Negative', 'score': 0.7236}]
|
||||
```
|
||||
|
||||
## Full classification example
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
from transformers import TFAutoModelForSequenceClassification
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
import numpy as np
|
||||
from scipy.special import softmax
|
||||
# Preprocess text (username and link placeholders)
|
||||
def preprocess(text):
|
||||
new_text = []
|
||||
for t in text.split(" "):
|
||||
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
||||
t = 'http' if t.startswith('http') else t
|
||||
new_text.append(t)
|
||||
return " ".join(new_text)
|
||||
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||
config = AutoConfig.from_pretrained(MODEL)
|
||||
# PT
|
||||
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||
#model.save_pretrained(MODEL)
|
||||
text = "Covid cases are increasing fast!"
|
||||
text = preprocess(text)
|
||||
encoded_input = tokenizer(text, return_tensors='pt')
|
||||
output = model(**encoded_input)
|
||||
scores = output[0][0].detach().numpy()
|
||||
scores = softmax(scores)
|
||||
# # TF
|
||||
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||
# model.save_pretrained(MODEL)
|
||||
# text = "Covid cases are increasing fast!"
|
||||
# encoded_input = tokenizer(text, return_tensors='tf')
|
||||
# output = model(encoded_input)
|
||||
# scores = output[0][0].numpy()
|
||||
# scores = softmax(scores)
|
||||
# Print labels and scores
|
||||
ranking = np.argsort(scores)
|
||||
ranking = ranking[::-1]
|
||||
for i in range(scores.shape[0]):
|
||||
l = config.id2label[ranking[i]]
|
||||
s = scores[ranking[i]]
|
||||
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
1) Negative 0.7236
|
||||
2) Neutral 0.2287
|
||||
3) Positive 0.0477
|
||||
```
|
|
@ -0,0 +1,37 @@
|
|||
{
|
||||
"_name_or_path": "/home/jupyter/misc/tweeteval/TweetEval_models/sentiment/sentiment_latest_2021/",
|
||||
"architectures": [
|
||||
"RobertaForSequenceClassification"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classifier_dropout": null,
|
||||
"eos_token_id": 2,
|
||||
"gradient_checkpointing": false,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"id2label": {
|
||||
"0": "Negative",
|
||||
"1": "Neutral",
|
||||
"2": "Positive"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"label2id": {
|
||||
"Negative": 0,
|
||||
"Neutral": 1,
|
||||
"Positive": 2
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 514,
|
||||
"model_type": "roberta",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"position_embedding_type": "absolute",
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.13.0.dev0",
|
||||
"type_vocab_size": 1,
|
||||
"vocab_size": 50265
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue