Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0
The model expects a raw audio signal as input and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it also provides the pooled states of the last transformer layer. The model was created by fine-tuning
Wav2Vec2-Large-Robust on MSP-Podcast (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An ONNX export of the model is available from doi:10.5281/zenodo.6221127. Further details are given in the associated paper.
Usage
importnumpyasnpimporttorchimporttorch.nnasnnfromtransformersimportWav2Vec2Processorfromtransformers.models.wav2vec2.modeling_wav2vec2import(Wav2Vec2Model,Wav2Vec2PreTrainedModel,)classRegressionHead(nn.Module):r"""Classification head."""def__init__(self,config):super().__init__()self.dense=nn.Linear(config.hidden_size,config.hidden_size)self.dropout=nn.Dropout(config.final_dropout)self.out_proj=nn.Linear(config.hidden_size,config.num_labels)defforward(self,features,**kwargs):x=featuresx=self.dropout(x)x=self.dense(x)x=torch.tanh(x)x=self.dropout(x)x=self.out_proj(x)returnxclassEmotionModel(Wav2Vec2PreTrainedModel):r"""Speech emotion classifier."""def__init__(self,config):super().__init__(config)self.config=configself.wav2vec2=Wav2Vec2Model(config)self.classifier=RegressionHead(config)self.init_weights()defforward(self,input_values,):outputs=self.wav2vec2(input_values)hidden_states=outputs[0]hidden_states=torch.mean(hidden_states,dim=1)logits=self.classifier(hidden_states)returnhidden_states,logits# load model from hubdevice='cpu'model_name='audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'processor=Wav2Vec2Processor.from_pretrained(model_name)model=EmotionModel.from_pretrained(model_name)# dummy signalsampling_rate=16000signal=np.zeros((1,sampling_rate),dtype=np.float32)defprocess_func(x:np.ndarray,sampling_rate:int,embeddings:bool=False,)->np.ndarray:r"""Predict emotions or extract embeddings from raw audio signal."""# run through processor to normalize signal# always returns a batch, so we just get the first entry# then we put it on the devicey=processor(x,sampling_rate=sampling_rate)y=y['input_values'][0]y=torch.from_numpy(y).to(device)# run through modelwithtorch.no_grad():y=model(y)[0ifembeddingselse1]# convert to numpyy=y.detach().cpu().numpy()returnyprocess_func(signal,sampling_rate)# Arousal dominance valence# [[0.5460759 0.6062269 0.4043165]]process_func(signal,sampling_rate,embeddings=True)# Pooled hidden states of last transformer layer# [[-0.00752167 0.0065819 -0.00746339 ... 0.00663631 0.00848747# 0.00599209]]