Update README.md
This commit is contained in:
parent
3f7a513ebc
commit
0dad9f3b1c
114
README.md
114
README.md
|
@ -9,4 +9,116 @@ datasets:
|
|||
tags:
|
||||
- speech
|
||||
license: cc-by-nc-sa-4.0
|
||||
---
|
||||
---
|
||||
|
||||
# Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0
|
||||
|
||||
The model expects a raw audio signal as input and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it also provides the pooled states of the last transformer layer. The model was created by fine-tuning [
|
||||
Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust) on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An [ONNX](https://onnx.ai/") export of the model is available from [doi:10.5281/zenodo.6221127](https://zenodo.org/record/6221127). Further details are given in the associated [paper](https://arxiv.org/abs/2203.07378).
|
||||
|
||||
# How to
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import Wav2Vec2Processor
|
||||
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
||||
Wav2Vec2Model,
|
||||
Wav2Vec2PreTrainedModel,
|
||||
)
|
||||
|
||||
|
||||
class RegressionHead(nn.Module):
|
||||
r"""Classification head."""
|
||||
|
||||
def __init__(self, config):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.dropout = nn.Dropout(config.final_dropout)
|
||||
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
|
||||
x = features
|
||||
x = self.dropout(x)
|
||||
x = self.dense(x)
|
||||
x = torch.tanh(x)
|
||||
x = self.dropout(x)
|
||||
x = self.out_proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class EmotionModel(Wav2Vec2PreTrainedModel):
|
||||
r"""Speech emotion classifier."""
|
||||
|
||||
def __init__(self, config):
|
||||
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
self.wav2vec2 = Wav2Vec2Model(config)
|
||||
self.classifier = RegressionHead(config)
|
||||
self.init_weights()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
):
|
||||
|
||||
outputs = self.wav2vec2(input_values)
|
||||
hidden_states = outputs[0]
|
||||
hidden_states = torch.mean(hidden_states, dim=1)
|
||||
logits = self.classifier(hidden_states)
|
||||
|
||||
return hidden_states, logits
|
||||
|
||||
|
||||
|
||||
# load model from hub
|
||||
device = 'cpu'
|
||||
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
|
||||
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
||||
model = EmotionModel.from_pretrained(model_name)
|
||||
|
||||
# dummy signal
|
||||
sampling_rate = 16000
|
||||
signal = np.zeros((1, sampling_rate), dtype=np.float32)
|
||||
|
||||
|
||||
def process_func(
|
||||
x: np.ndarray,
|
||||
sampling_rate: int,
|
||||
embeddings: bool = False,
|
||||
) -> np.ndarray:
|
||||
r"""Predict emotions or extract embeddings from raw audio signal."""
|
||||
|
||||
# run through processor to normalize signal
|
||||
# always returns a batch, so we just get the first entry
|
||||
# then we put it on the device
|
||||
y = processor(x, sampling_rate=sampling_rate)
|
||||
y = y['input_values'][0]
|
||||
y = torch.from_numpy(y).to(device)
|
||||
|
||||
# run through model
|
||||
with torch.no_grad():
|
||||
y = model(y)[0 if embeddings else 1]
|
||||
|
||||
# convert to numpy
|
||||
y = y.detach().cpu().numpy()
|
||||
|
||||
return y
|
||||
|
||||
|
||||
process_func(signal, sampling_rate)
|
||||
# Arousal dominance valence
|
||||
# [[0.5460759 0.6062269 0.4043165]]
|
||||
|
||||
process_func(signal, sampling_rate, embeddings=True)
|
||||
# Pooled hidden states of last transformer layer
|
||||
# [[-0.00752167 0.0065819 -0.00746339 ... 0.00663631 0.00848747
|
||||
# 0.00599209]]
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue