visual_QA/layoutlmv3_base_mpdocvqa/app.py

43 lines
1.6 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import gradio as gr
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering
##这个模型的示例存在问题,无法运行
def inference(img):
pretrained_model_path = "layoutlmv3-base-mpdocvqa"
processor = LayoutLMv3Processor.from_pretrained(pretrained_model_path, apply_ocr=False)
model = LayoutLMv3ForQuestionAnswering.from_pretrained(pretrained_model_path)
image = img.convert("RGB")
question = "Is this a question?"
context = ["Example"]
boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image.
document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt")
outputs = model(**document_encoding)
# Get the answer
start_idx = torch.argmax(outputs.start_logits, axis=1)
end_idx = torch.argmax(outputs.end_logits, axis=1)
answers = processor.tokenizer.decode(input_tokens[start_idx: end_idx + 1]).strip()
return answers
title = "layoutlmv3-base-mpdocvqa"
description = "这是layoutlmv3-base-mpdocvqa的Gradio Demo用于视觉问答。"
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
examples = [['example_cat.jpg'], ['Masahiro.png']]
demo = gr.Interface(
fn=inference,
inputs=[gr.inputs.Image(type="pil")],
outputs=gr.outputs.Textbox(),
title=title,
description=description,
article=article,
examples=examples)
demo.launch(server_name="0.0.0.0")