import gradio as gr import torch from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering ##这个模型的示例存在问题,无法运行 def inference(img): pretrained_model_path = "layoutlmv3-base-mpdocvqa" processor = LayoutLMv3Processor.from_pretrained(pretrained_model_path, apply_ocr=False) model = LayoutLMv3ForQuestionAnswering.from_pretrained(pretrained_model_path) image = img.convert("RGB") question = "Is this a question?" context = ["Example"] boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image. document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt") outputs = model(**document_encoding) # Get the answer start_idx = torch.argmax(outputs.start_logits, axis=1) end_idx = torch.argmax(outputs.end_logits, axis=1) answers = processor.tokenizer.decode(input_tokens[start_idx: end_idx + 1]).strip() return answers title = "layoutlmv3-base-mpdocvqa" description = "Gradio Demo for layoutlmv3-base-mpdocvqa. To use it, simply upload your image, or click one of the examples to load them." article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>" examples = [['example_cat.jpg'], ['Masahiro.png']] demo = gr.Interface( fn=inference, inputs=[gr.inputs.Image(type="pil")], outputs=gr.outputs.Textbox(), title=title, description=description, article=article, examples=examples) demo.launch()